Home
Class 12
MATHS
If A=[(sinalpha,-sinalpha),(sinalpha,cos...

If `A=[(sinalpha,-sinalpha),(sinalpha,cosalpha)]`, then `A+A'=I`, if the value of `alpha` is :

A

`pi/6`

B

`pi/3`

C

`pi`

D

`(3pi)/(2)`.

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise COMPETITION FILE (Questions from JEE Main)|8 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then A+A'=I , if the value of alpha is :

If A=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then A+A'=I , if the value of alpha is :

Knowledge Check

  • If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

    A
    `A_(alpha).A_((-alpha))=I`
    B
    `A_(alpha).A_((-alpha))=O`
    C
    `A_(alpha).A_(beta)=A_(alphabeta)`
    D
    `A_(alpha).A_(beta)=A_(alpha+beta)`
  • If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

    A
    `[[cos10alpha, -sin10alpha], [sin10alpha, cos10alpha]]`
    B
    `[[cos10alpha, sin10alpha], [-sin10alpha, cos10alpha]]`
    C
    `[[cos10alpha, sin10alpha], [-sin10alpha, -cos10alpha]]`
    D
    `[[cos10alpha, -sin10alpha], [-sin10alpha, -cos10alpha]]`
  • If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?

    A
    `[(cos^2alpha,sin^2alpha),(-sin^2alpha,cos^2alpha)]`
    B
    `[(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha)]`
    C
    `[(2cosalpha,2sinalpha),(-sinalpha,2cosalpha)]`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If A=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] then A+A'=I , the value of alpha is :

    If A=[{:(cosalpha,-sinalpha),(sinalpha,cosalpha):}] , then find the least value of alpha for which A+A'=I.

    If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

    If A=[(sinalpha,cosalpha),(-cosalpha,sinalpha)] , the prove that A'A=I .

    if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha