Home
Class 12
MATHS
If A=[{:(1,0,2),(0,2,1),(2,0,3):}] and A...

If `A=[{:(1,0,2),(0,2,1),(2,0,3):}]` and `A^(3)-6A^(2)+7A+kI_(3)=O`, find k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) in the equation: \[ A^3 - 6A^2 + 7A + kI_3 = O \] where \( A \) is given as: \[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \] Calculating the entries of \( A^2 \): - First row, first column: \( 1 \cdot 1 + 0 \cdot 0 + 2 \cdot 2 = 1 + 0 + 4 = 5 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 2 + 2 \cdot 0 = 0 + 0 + 0 = 0 \) - First row, third column: \( 1 \cdot 2 + 0 \cdot 1 + 2 \cdot 3 = 2 + 0 + 6 = 8 \) - Second row, first column: \( 0 \cdot 1 + 2 \cdot 0 + 1 \cdot 2 = 0 + 0 + 2 = 2 \) - Second row, second column: \( 0 \cdot 0 + 2 \cdot 2 + 1 \cdot 0 = 0 + 4 + 0 = 4 \) - Second row, third column: \( 0 \cdot 2 + 2 \cdot 1 + 1 \cdot 3 = 0 + 2 + 3 = 5 \) - Third row, first column: \( 2 \cdot 1 + 0 \cdot 0 + 3 \cdot 2 = 2 + 0 + 6 = 8 \) - Third row, second column: \( 2 \cdot 0 + 0 \cdot 2 + 3 \cdot 0 = 0 + 0 + 0 = 0 \) - Third row, third column: \( 2 \cdot 2 + 0 \cdot 1 + 3 \cdot 3 = 4 + 0 + 9 = 13 \) Thus, \[ A^2 = \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now we calculate \( A^3 \) by multiplying \( A \) with \( A^2 \): \[ A^3 = A \cdot A^2 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} \] Calculating the entries of \( A^3 \): - First row, first column: \( 1 \cdot 5 + 0 \cdot 2 + 2 \cdot 8 = 5 + 0 + 16 = 21 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 4 + 2 \cdot 0 = 0 + 0 + 0 = 0 \) - First row, third column: \( 1 \cdot 8 + 0 \cdot 5 + 2 \cdot 13 = 8 + 0 + 26 = 34 \) - Second row, first column: \( 0 \cdot 5 + 2 \cdot 2 + 1 \cdot 8 = 0 + 4 + 8 = 12 \) - Second row, second column: \( 0 \cdot 0 + 2 \cdot 4 + 1 \cdot 0 = 0 + 8 + 0 = 8 \) - Second row, third column: \( 0 \cdot 8 + 2 \cdot 5 + 1 \cdot 13 = 0 + 10 + 13 = 23 \) - Third row, first column: \( 2 \cdot 5 + 0 \cdot 2 + 3 \cdot 8 = 10 + 0 + 24 = 34 \) - Third row, second column: \( 2 \cdot 0 + 0 \cdot 4 + 3 \cdot 0 = 0 + 0 + 0 = 0 \) - Third row, third column: \( 2 \cdot 8 + 0 \cdot 5 + 3 \cdot 13 = 16 + 0 + 39 = 55 \) Thus, \[ A^3 = \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} \] ### Step 3: Substitute into the equation Now we substitute \( A^3 \), \( A^2 \), and \( A \) into the equation: \[ A^3 - 6A^2 + 7A + kI_3 = O \] Calculating \( -6A^2 \): \[ -6A^2 = -6 \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} = \begin{pmatrix} -30 & 0 & -48 \\ -12 & -24 & -30 \\ -48 & 0 & -78 \end{pmatrix} \] Calculating \( 7A \): \[ 7A = 7 \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{pmatrix} \] Calculating \( kI_3 \): \[ kI_3 = k \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix} \] ### Step 4: Combine all parts Now we combine all parts: \[ \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} + \begin{pmatrix} -30 & 0 & -48 \\ -12 & -24 & -30 \\ -48 & 0 & -78 \end{pmatrix} + \begin{pmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{pmatrix} + \begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] Calculating each entry: 1. First row: - First column: \( 21 - 30 + 7 + k = -2 + k \) - Second column: \( 0 + 0 + 0 = 0 \) - Third column: \( 34 - 48 + 14 = 0 \) 2. Second row: - First column: \( 12 - 12 + 0 + 0 = 0 \) - Second column: \( 8 - 24 + 14 + k = -2 + k \) - Third column: \( 23 - 30 + 7 = 0 \) 3. Third row: - First column: \( 34 - 48 + 14 = 0 \) - Second column: \( 0 + 0 + 0 = 0 \) - Third column: \( 55 - 78 + 21 + k = -2 + k \) ### Step 5: Set equations to zero From the first row, first column: \[ -2 + k = 0 \implies k = 2 \] From the second row, second column: \[ -2 + k = 0 \implies k = 2 \] From the third row, third column: \[ -2 + k = 0 \implies k = 2 \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Answer the following questions)|22 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos

Similar Questions

Explore conceptually related problems

A = [[1,0,20,2,12,0,3]] and A ^ (2) -6A ^ (2) + 7A + kI_ (3) = 0

If A=[[1,0,20,2,12,0,3]], prove that A^(3)-6A^(2)+7A+2I=0

Knowledge Check

  • If A = [(1,0,2),(0,2,1),(2,0,3)] then the value of A^(3) - 6A^(2) +7A+2i is

    A
    I
    B
    0
    C
    `-2I`
    D
    2I
  • If A= [{:(,1,0,2),(,0,2,1),(,2,0,3):}] is a root of polynomial x^(3)-6x^(2)+7x+k=0 then the value of k is

    A
    2
    B
    4
    C
    `-2`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If A=[{:(2,0,1),(2,1,3),(1,-1,0):}] . find A^(2)-5A+6I and hence , find a matrix X such that A^(2)-5A+6I+X=O .

    A=[{:(1,0,k),(2, 1,3),(k,0,1):}] is invertible for

    If A=[(1,-2,0),(2,1,3),(0,-2,1)] and B=[(7,2,-6),(-2,1,-3),(-4,2,5)] , find AB Hence , solve the system of equation x-2y=10, 2x+y+3z=8 and -2y+z=7.

    if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

    If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A= ………………..

    if A=[{:(3,2,1),(1,2,3),(3,-6,1):}],B=[{:(1,4,0),(2,-3,0),(1,2,0):}] and C=[{:(1,2,3),(3,2,1),(8,7,9):}], then find AB-AC.