Home
Class 12
MATHS
Let f(x)=sec^(-1)[1+cos^(2)x], where [.]...

Let `f(x)=sec^(-1)[1+cos^(2)x],` where [.] denotes the greatest integer function. Then the

A

domain of `f` is R

B

domain of `f` is `[1,2]`

C

domain of `f` is `[1,2]`

D

range of `f " is " {sec^(-1) 1, sec^(-1)2}`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`f(x)=sec^(-1)[1+cos^(2)x]`
`f(x)` is defined if `[1+cos^(2)x] le -1 or [1+cos^(2)x] ge 1`
i.e., `[cos^(2)x] le -2("not possible") or [cos^(2)x] ge 0`
i.e., `cos^(2)x ge 0 or x in R`
Now, `0 le cos^(2)x le 1 or 1 le 1+ cos^(2)x le 2`
`or [1+cos^(2)x]=1,2`
`or sec^(-1)[1+cos^(2)x]=sec^(-1)1, sec^(-1)2`
Hence, the range is `{sec^(-1)1,sec^(-1)2}.`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|125 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=cos ec^(-1)[1+sin^(2)x], where [*] denotes the greatest integer function,then the range of f

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Knowledge Check

  • Let f(x) = sec^(-1)[1 + cos^(2) x] , wheb denotes the greatest integer function. Then the range of (x) is

    A
    ` [ 1, 2 ]`
    B
    `[ 0, 2] `
    C
    `{sec ^(-1) 1, sec ^(-1) 2} `
    D
    none of these
  • Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

    A
    `f(x) != 0` for all real values of x
    B
    f(x) = 0 for only two real value of x
    C
    f(x) = 0 for infinite values of x.
    D
    f(x) = 0 for no real value of x
  • Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

    A
    `x epsilon R, x` not an integer
    B
    `x epsilon (-oo, -2)uu[-1,oo)`
    C
    `x epsilon R, x!=-2`
    D
    `x epsilon (-oo,-1]`
  • Similar Questions

    Explore conceptually related problems

    If f(x)=[2x], where [.] denotes the greatest integer function,then

    f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

    Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

    Let f(x)=sqrt([sin2x]-[cos2x]) (where II denotes the greatest integer function then the range of f(x) will be

    f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.