Home
Class 12
MATHS
Consider the functions f(x)={(x+1",",x...

Consider the functions
`f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):}`
The domain of the function `f(g(x))` is

A

`[0,sqrt(2)]`

B

`[-1,2]`

C

`[-1,sqrt(2)]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):}`
`g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):}`
` :. f(x)={(g(x)+1",",g(x) le 1),(2g(x)+1",",1lt g(x) le 2):}`
`or f(g(x))={(x^(2)+1",",x^(2) le 1",", -1 le x lt2),(x+2+1",",x+2 le 1",",2le x le 3),(2x^(2)+1",",1 lt x^(2) le 2",", -1 le x lt2),(2(x+2)+1",",1 lt x+2 le 2",",2le x le 3):}`
`or f(g(x))={(x^(2)+1",", -1 le x le1),(2x^(2)+1",",1 lt x le sqrt(2)):}`
Hence the domain of `f(x) " is " [-1,sqrt(2)].`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Two functions are defined as under : f(x)={(x+1, x le 1), (2x+1, 1 < x le 2):} and g(x)={(x^2, -1 le x le 2), (x+2, 2 le x le 3):} Find fog and gof

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Knowledge Check

  • Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

    A
    `[1,5]`
    B
    `[2,3]`
    C
    `[1,2] cup [3,5]`
    D
    None of these
  • Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is

    A
    2
    B
    4
    C
    3
    D
    5
  • Two functions are defined as f(x)= {:{(x+1,"if" x le1),(2x+1,"if" lt x le 2):} g(x)= {:{(x^(2),"if" -1 le x lt 2),(x+2,"if" 2 le x le 3):}

    A
    `{:{(x+1,"if" |x| le1),(2x^(2)+1,"if" lt x le sqrt(2)):}`
    B
    `{:{(x+1,"if" |x| le1),(2x^(2)+1,"if" lt x lt sqrt(2)):}`
    C
    `{:{(x+1,"if" |x| le1),(2x^(2)+1,"if" lt x ge sqrt(2)):}`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If the function f(x) ={x+1 if x the 1 , 2x+1 if 1 lt x the 2 and g(x) = { x^2 , -1 the x the 2 x+2 2 le x le 3 then the number of roots of the equation f(g(x))=2

    Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

    Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If a=2 and b=3, then the range of g(f(x)) is

    If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

    Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} g(f(x)) is not defined if