Home
Class 12
MATHS
intsqrt(1+cos 2x) dx...

`intsqrt(1+cos 2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{1 + \cos 2x} \, dx\), we will follow these steps: ### Step 1: Use the identity for \(\cos 2x\) We know that: \[ \cos 2x = 2\cos^2 x - 1 \] Thus, we can rewrite \(1 + \cos 2x\) as: \[ 1 + \cos 2x = 1 + (2\cos^2 x - 1) = 2\cos^2 x \] ### Step 2: Substitute into the integral Now we substitute this back into the integral: \[ \int \sqrt{1 + \cos 2x} \, dx = \int \sqrt{2\cos^2 x} \, dx \] ### Step 3: Simplify the square root Since \(\sqrt{2\cos^2 x} = \sqrt{2} \cdot \sqrt{\cos^2 x} = \sqrt{2} \cdot |\cos x|\). However, since we are integrating, we can assume \(x\) is in a range where \(\cos x\) is non-negative (for example, \(0 \leq x \leq \frac{\pi}{2}\)), thus: \[ \sqrt{2\cos^2 x} = \sqrt{2} \cos x \] ### Step 4: Integrate Now we can integrate: \[ \int \sqrt{2} \cos x \, dx = \sqrt{2} \int \cos x \, dx \] The integral of \(\cos x\) is \(\sin x\), so: \[ \sqrt{2} \int \cos x \, dx = \sqrt{2} \sin x + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \sqrt{1 + \cos 2x} \, dx = \sqrt{2} \sin x + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

intsqrt(1+sin 2x) dx

intsqrt (1+cos2x)dx

Knowledge Check

  • intsqrt(1+cos5x)dx=

    A
    `(2)/(5)sin((5x)/(2))+c`
    B
    `(sqrt2)/(5)sin((5x)/(2))+c`
    C
    `(2sqrt2)/(5)sin((5x)/(2))+c`
    D
    `(2sqrt2)/(5)cos((5x)/(2))+c`
  • intsqrt(1+cos x )dx is equal to

    A
    `2sqrt2 cos.(x)/(2)+C`
    B
    `2sqrt2 sin.(x)/(2)+C`
    C
    `sqrt2 cos .(x)/(2)+C`
    D
    `sqrt2sin.(x)/(2)+C`
  • intsqrt(1+sin2x)dx=

    A
    `sinx +cosx+c`
    B
    `sinx -cosx+c`
    C
    `cosx -sinx+c`
    D
    `-cosx -sinx+c`
  • Similar Questions

    Explore conceptually related problems

    (i) int sqrt(1+cos2x) dx , (ii) intsqrt(1-cos2x)dx

    Evaluate: intsqrt(cosec^2x-2)dx

    Evaluate : intsqrt(1-sin2x)dx .

    intsqrt((1-cos2x)/(1+cos 2x))dx=

    intsqrt((1+cos 3x)/(1-cos3x))dx=