Home
Class 12
MATHS
int cos^(3) x. sin x dx...

`int cos^(3) x. sin x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^3 x \sin x \, dx \), we can use the substitution method. Here are the steps: ### Step 1: Choose a substitution Let \( t = \cos x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ \frac{dt}{dx} = -\sin x \quad \Rightarrow \quad dt = -\sin x \, dx \] This implies that \( \sin x \, dx = -dt \). ### Step 2: Rewrite the integral Substituting \( t \) and \( dt \) into the integral, we have: \[ \int \cos^3 x \sin x \, dx = \int t^3 (-dt) = -\int t^3 \, dt \] ### Step 3: Integrate Now, we can integrate \( -\int t^3 \, dt \): \[ -\int t^3 \, dt = -\left( \frac{t^4}{4} \right) + C = -\frac{t^4}{4} + C \] ### Step 4: Substitute back for \( t \) Now, substitute back \( t = \cos x \): \[ -\frac{t^4}{4} + C = -\frac{\cos^4 x}{4} + C \] ### Step 5: Final answer Thus, the integral \( \int \cos^3 x \sin x \, dx \) is: \[ -\frac{\cos^4 x}{4} + C \] ### Summary of the solution: \[ \int \cos^3 x \sin x \, dx = -\frac{\cos^4 x}{4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Integrate: int cos^3 x sin^4 x dx.

int cos 3x sin 2x dx = ?

int (e ^ (sin x)) / (cos ^ (2) x) (x cos ^ (3) x-sin x) dx

int cos^(3)x.e^(log(sin x)) dx is equal to

int (cos^(4)x . sin^(3) x)dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

int cos^(2)x*sin^(3)x*dx

int x cos^(3)x^(2)*sin x^(2)dx

(int x cos^(3)x^(2)sin x^(2))dx

int x*cos^(3)x^(2)*sin x^(2)dx