Home
Class 12
MATHS
(i) int sin 2x. cos5x dx " "(ii) in...

`(i) int sin 2x. cos5x dx " "(ii) int(sin 4x)/(sin x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): \( \int \sin(2x) \cos(5x) \, dx \) 1. **Use the product-to-sum identities**: We can use the identity: \[ \sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)] \] Here, \( A = 2x \) and \( B = 5x \). Thus, \[ \sin(2x) \cos(5x) = \frac{1}{2} [\sin(2x + 5x) + \sin(2x - 5x)] = \frac{1}{2} [\sin(7x) + \sin(-3x)] \] Since \( \sin(-\theta) = -\sin(\theta) \), we have: \[ \sin(-3x) = -\sin(3x) \] Therefore, \[ \sin(2x) \cos(5x) = \frac{1}{2} [\sin(7x) - \sin(3x)] \] 2. **Integrate**: Now, we can write the integral as: \[ \int \sin(2x) \cos(5x) \, dx = \frac{1}{2} \int [\sin(7x) - \sin(3x)] \, dx \] This can be split into two separate integrals: \[ = \frac{1}{2} \left( \int \sin(7x) \, dx - \int \sin(3x) \, dx \right) \] 3. **Calculate the integrals**: The integrals are: \[ \int \sin(7x) \, dx = -\frac{1}{7} \cos(7x) + C_1 \] \[ \int \sin(3x) \, dx = -\frac{1}{3} \cos(3x) + C_2 \] Therefore, \[ = \frac{1}{2} \left( -\frac{1}{7} \cos(7x) + \frac{1}{3} \cos(3x) \right) + C \] Simplifying gives: \[ = -\frac{1}{14} \cos(7x) + \frac{1}{6} \cos(3x) + C \] ### Final Answer for Part (i): \[ \int \sin(2x) \cos(5x) \, dx = -\frac{1}{14} \cos(7x) + \frac{1}{6} \cos(3x) + C \] --- ### Part (ii): \( \int \frac{\sin(4x)}{\sin(x)} \, dx \) 1. **Rewrite \( \sin(4x) \)**: We can use the identity: \[ \sin(4x) = 2 \sin(2x) \cos(2x) \] Thus, \[ \int \frac{\sin(4x)}{\sin(x)} \, dx = \int \frac{2 \sin(2x) \cos(2x)}{\sin(x)} \, dx \] 2. **Use the double angle formula for \( \sin(2x) \)**: We know that: \[ \sin(2x) = 2 \sin(x) \cos(x) \] So, \[ \int \frac{2(2 \sin(x) \cos(x)) \cos(2x)}{\sin(x)} \, dx = \int 4 \cos(x) \cos(2x) \, dx \] 3. **Use the product-to-sum identities again**: Using the identity: \[ \cos A \cos B = \frac{1}{2} [\cos(A + B) + \cos(A - B)] \] Here, \( A = x \) and \( B = 2x \): \[ \cos(x) \cos(2x) = \frac{1}{2} [\cos(3x) + \cos(x)] \] Therefore, \[ 4 \cos(x) \cos(2x) = 2 [\cos(3x) + \cos(x)] \] 4. **Integrate**: Now we can write the integral as: \[ \int 2 [\cos(3x) + \cos(x)] \, dx = 2 \left( \int \cos(3x) \, dx + \int \cos(x) \, dx \right) \] 5. **Calculate the integrals**: \[ \int \cos(3x) \, dx = \frac{1}{3} \sin(3x) + C_1 \] \[ \int \cos(x) \, dx = \sin(x) + C_2 \] Thus, \[ = 2 \left( \frac{1}{3} \sin(3x) + \sin(x) \right) + C \] Simplifying gives: \[ = \frac{2}{3} \sin(3x) + 2 \sin(x) + C \] ### Final Answer for Part (ii): \[ \int \frac{\sin(4x)}{\sin(x)} \, dx = \frac{2}{3} \sin(3x) + 2 \sin(x) + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (sin 4x)/(cos 2x) dx

I=int(sin x)/(cos x)dx

int(sin x)/(5+cos x)dx

int(cos x)/(4+sin x)dx

(i) int(sin(x-a))/(sin x)dx

I=int(sin x)/(sin(x-a))dx

int(sin x)/(cos^(4)x)dx

(i) int (sin x)/(1+ cos x) dx. (ii) int (sin x)/(1+ cos x)^2 dx.

" 4.(i) "int(sin x)/(1-sin^(2)x)dx

Evaluate : (i) int(sin4x)/(cos2x)dx (ii) int(sin4x)/(sinx)dx