Home
Class 12
MATHS
If e^(-pi//2)ltthetaltpi/2, then :...

If `e^(-pi//2)ltthetaltpi/2`, then :

A

`cos (log theta)gtlog (cos theta)`

B

`cos (log theta)ltlog (cos theta)`

C

`cos (log theta)=log (cos theta)`

D

`cos (log theta)= 2/3 log (cos theta).`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS

    MODERN PUBLICATION|Exercise LATEST QUSTIONS FROM AIEEE/JEE EXAMINATIONS|8 Videos
  • TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|12 Videos
  • TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|10 Videos
  • UNIT TEST PAPER NO - 4

    MODERN PUBLICATION|Exercise SELECT THE CORRECT ANSWER|25 Videos

Similar Questions

Explore conceptually related problems

If 0ltthetaltpi , then the minmum value of sin^(3) theta+cosec^(3) theta +2 is

In the interval [-pi/2,pi/2] the equation log_(sin theta)(cos 2 theta)=2 has

Knowledge Check

  • int_(-pi/2)^(pi/2) cos theta (1+ sin theta)^(2) d theta =

    A
    -8/3
    B
    8/3
    C
    -8/5
    D
    - 5/8
  • If int_(log2)^(x) (du)/((e^(u)-1)^(1/2)) = pi/6 , then e^(x) =

    A
    1
    B
    2
    C
    4
    D
    minus 1
  • lim_(theta rarr pi/2) (pi/2- theta)/(cot theta) =

    A
    0
    B
    (-1)
    C
    1
    D
    `oo`
  • Similar Questions

    Explore conceptually related problems

    f(x) = {{:((k cos x)/(pi - 2x) "if" , x ne (pi)/(2)),( 3, "if" x=(pi)/(2)):} at x= pi/2 , f (x) is containuous , find the value of k .

    Let the function g:(-oo, oo) to (-(pi)/(2), (pi)/(2)) be given by g(u)=2tan^(-1)(e^(u))-(pi)/(2) . Then g is :

    The value of the integral int_(-pi//2)^(pi//2) (x^2 + l_n (pi + x)/(pi - x)) cos x dx is :

    Let f(x) = (1-sin x)/((pi - 2x)^(2)),"where x" ne pi//2 and f(pi//2) = k . The value of k which makes f continuous at pi//2 is :

    pi and e are :