Home
Class 12
MATHS
Let cos(alpha+beta)""=4/5 and let s in(a...

Let `cos(alpha+beta)""=4/5` and let `s in(alphabeta)""=5/(13)` where `0lt=alpha,betalt=pi/4` , then `t a n""2alpha=` (1) `(56)/(33)` (2) `(19)/(12)` (3) `(20)/7` (4) `(25)/(16)`

A

`25/16`

B

`56/33`

C

`19/12`

D

`20/7.`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|12 Videos
  • TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTION(LEVEL-II)|86 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|10 Videos
  • UNIT TEST PAPER NO - 4

    MODERN PUBLICATION|Exercise SELECT THE CORRECT ANSWER|25 Videos

Similar Questions

Explore conceptually related problems

If cos (alpha+beta)=(4)/(5), sin (alpha-beta)=(5)/(13) and 0 lt alpha , beta lt(pi)/(4), then tan 2 alpha=

If cos (alpha+beta)=(4)/(5), sin (alpha-beta)=(5)/(13) and 0 lt alpha, beta lt (pi)/(2) then cos 2 alpha=

Knowledge Check

  • Let alpha,beta be such that piltalpha-betalt3pi . If sinalpha+sinbeta=-(21)/(65)andcosalpha+cosbeta=-(17)/(65) , then the value of cos.(alpha-beta)/(2) is :

    A
    `-(3)/(sqrt(130))`
    B
    `(3)/(sqrt(130))`
    C
    `(6)/(65)`
    D
    `-(6)/(65)`
  • Let alpha, beta be such that pi lt=alpha lt=beta lt=3pi if sinalpha + sinbeta = -21/65 and cosalpha + cosbeta = -27/65 , then the value of cos""(alpha - beta)/65 is :

    A
    `-3/sqrt(130)`
    B
    `3/sqrt(130)`
    C
    `6/65`
    D
    `-6/65.`
  • The value of ' c ' for which |alpha^(2)-beta^(2)|=(7)/(4) where alpha and beta are the roots of 2 x^(2)+7 x+c=0 is

    A
    1)4
    B
    2)0
    C
    3)6
    D
    4)2
  • Similar Questions

    Explore conceptually related problems

    cos (alpha+beta)=(3)/(5) and sin (alpha-beta)=(3)/(5) and 0 lt alpha, beta lt (pi)/(2) then sin 2 alpha=

    If alpha and beta be between 0 and (pi)/(2) and if cos (alpha+beta)=(12)/(13) and sin (alpha-beta)=(3)/(5), then sin 2 alpha is equal to

    If (sin alpha)^(x)+(cos alpha)^(x) ge 1,0 lt a lt (pi)/(2) then

    sin alpha=(12)/(13) (0 lt alpha lt (pi)/(2)r) cos beta=-(3)/(5)(pi lt beta lt (3 pi)/(2)) then sin (alpha+beta) is

    Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals: