Home
Class 12
MATHS
If F(x)=f(x)dotg(x) and f^(prime)(x)dot...

If `F(x)=f(x)dotg(x)` and `f^(prime)(x)dotg^(prime)(x)=c ,` prove that `(F")/F=f^(primeprime)/f+g^(primeprime)/g+(2c)/(fg)&F^(primeprimeprime)/F=f^(primeprimeprime)/f+g^(primeprimeprime)/g`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    RESONANCE DPP|Exercise All Questions|4 Videos
  • INTEGRALS

    RESONANCE DPP|Exercise All Questions|26 Videos

Similar Questions

Explore conceptually related problems

If x=f(t)cost-f^(prime)(t)sint and y=f(t)sint+f^(prime)(t)cost , then ((dx)/(dt))^2+((dy)/(dt))^2= (a) f(t)-f^(primeprime)(t) (b) {f(t)-f^(primeprime)(t)}^2 (c) {f(t)+f^(primeprime)(t)}^2 (d) none of these

If x= f(t )cost-f^(prime)(t)sinta n dy=f(t)sint+f^(prime)(t)cost ,t h e n((dx)/(dt))^2+((dy)/(dt))^2 (a) f(t)-f^(primeprime)(t) (b) {f(t)-f^(primeprime)(t)}^2 (c) {f(t)+f^(primeprime)(t)}^2 (d) none of these

Suppose fa n dg are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all xa n df^(prime)a n dg' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x))e q u a l (a)(-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c)(-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f(x)=(1)/((1-x)) and g(x)=f[f{f(x))} then g(x) is discontinuous at