Home
Class 12
MATHS
If F(x)=f(x)dotg(x) and f^(prime)(x)dot...

If `F(x)=f(x)dotg(x)` and `f^(prime)(x)dotg^(prime)(x)=c ,` prove that `(F")/F=f^(primeprime)/f+g^(primeprime)/g+(2c)/(fg)&F^(primeprimeprime)/F=f^(primeprimeprime)/f+g^(primeprimeprime)/g`

Answer

Step by step text solution for If F(x)=f(x)dotg(x) and f^(prime)(x)dotg^(prime)(x)=c , prove that (F")/F=f^(primeprime)/f+g^(primeprime)/g+(2c)/(fg)&F^(primeprimeprime)/F=f^(primeprimeprime)/f+g^(primeprimeprime)/g by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    RESONANCE DPP|Exercise All Questions|4 Videos
  • INTEGRALS

    RESONANCE DPP|Exercise All Questions|26 Videos

Similar Questions

Explore conceptually related problems

If x=f(t)cost-f^(prime)(t)sint and y=f(t)sint+f^(prime)(t)cost , then ((dx)/(dt))^2+((dy)/(dt))^2= (a) f(t)-f^(primeprime)(t) (b) {f(t)-f^(primeprime)(t)}^2 (c) {f(t)+f^(primeprime)(t)}^2 (d) none of these

If x= f(t )cost-f^(prime)(t)sinta n dy=f(t)sint+f^(prime)(t)cost ,t h e n((dx)/(dt))^2+((dy)/(dt))^2 (a) f(t)-f^(primeprime)(t) (b) {f(t)-f^(primeprime)(t)}^2 (c) {f(t)+f^(primeprime)(t)}^2 (d) none of these

Knowledge Check

  • If F(x)=f(x).g(x) and f'(x).g'(x)=c , then

    A
    `F'=c(f)/(f')+(g)/(g')`
    B
    `F'=c(f)/(f')-(g)/(g')`
    C
    `(F'')/(F)=(f'')/(f)+(g'')/(g)+(2c)/(fg)`
    D
    None of these
  • If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

    A
    4
    B
    `1/4`
    C
    2
    D
    `1/2`
  • If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

    A
    `2x`
    B
    `2.f(x)`
    C
    `[f(x)]^2`
    D
    none of these.
  • Similar Questions

    Explore conceptually related problems

    Suppose fa n dg are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all xa n df^(prime)a n dg' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x))e q u a l (a)(-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c)(-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

    If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

    Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

    If phi (x) = f(x) g(x) , where f'(x) g'(x) =c then (phi ' ' )/(phi) = (f ' ' )/(f ) +(g ' ' )/(g ) +(2c )/(f g) true of false ?

    If f(x)=(1)/((1-x)) and g(x)=f[f{f(x))} then g(x) is discontinuous at