Home
Class 14
MATHS
Simplify : (x^(2^(n-1)) + y^(2^(n-1)))(x...

Simplify : `(x^(2^(n-1)) + y^(2^(n-1)))(x^(2^(n-1)) - y^(2^(n-1)))`

A

`x^(2^n) - y^(2^n)`

B

`x^(2^n) + y^(2^n)`

C

`(x^n - y^n)^2`

D

`(x^2 - y^2)^(n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((x^{2^{(n-1)}} + y^{2^{(n-1)}})(x^{2^{(n-1)}} - y^{2^{(n-1)}})\), we can follow these steps: ### Step 1: Identify the expression We have the expression in the form of \((a + b)(a - b)\), where: - \(a = x^{2^{(n-1)}}\) - \(b = y^{2^{(n-1)}}\) ### Step 2: Apply the difference of squares formula Using the difference of squares formula, which states that \((a + b)(a - b) = a^2 - b^2\), we can rewrite our expression: \[ (x^{2^{(n-1)}} + y^{2^{(n-1)}})(x^{2^{(n-1)}} - y^{2^{(n-1)}}) = a^2 - b^2 \] ### Step 3: Calculate \(a^2\) and \(b^2\) Now, we calculate \(a^2\) and \(b^2\): - \(a^2 = (x^{2^{(n-1)}})^2 = x^{2 \cdot 2^{(n-1)}} = x^{2^{n}}\) - \(b^2 = (y^{2^{(n-1)}})^2 = y^{2 \cdot 2^{(n-1)}} = y^{2^{n}}\) ### Step 4: Substitute back into the difference of squares formula Now we substitute \(a^2\) and \(b^2\) back into the equation: \[ x^{2^{n}} - y^{2^{n}} \] ### Final Result Thus, the simplified expression is: \[ x^{2^{n}} - y^{2^{n}} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.6|5 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.7|12 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.4|11 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • GEOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|52 Videos

Similar Questions

Explore conceptually related problems

Divide x^(2n)+a^(2^(n-1))x^(2^(n-1))+a^(2^(n))byx^(2^(n-1))-a^(2^(n-2))x^(2^(n-2))+a^(2^(n-1))

Simplify the following: (3^(n)x9^(n+1))/(3^(n-1)x9^(n-1)) (ii) (5x25^(n+1)-25x5^(2n))/(5x5^(2n+3)-(25)^(n+1))

Knowledge Check

  • Let S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n , then

    A
    `S_(1)(x)=1`
    B
    `S_(1)(x)=x+(1)/(x)`
    C
    `S_(100)(x)=(1)/(x^(99))((x^(100)-1)/(x-1))^(2)`
    D
    `S_(100)(x)=(1)/(x^(100))((x^(100)-1)/(x-1))^(2)`
  • If y=cos^(-1)((x^(2n)-1)/(x^(2n)+1)))," then "(1+x^(2n))y_(1)=

    A
    `-2nx^(n)`
    B
    `2nx^(n)`
    C
    `-2nx^(n-1)`
    D
    `2nx^(n-1)`
  • Similar Questions

    Explore conceptually related problems

    Simplify: (x-y)(x+y)x^(2)+y^(2))(x^(4)+y^(5))2x-1)(2x+1)(4x^(2)+1)(16x^(4)+1)(7m-8n)^(2)+(7m+8n)^(2)

    Simplify the following: (5^(n+3)-6x5^(n+1))/(9x5^(x)-2^(2)x5^(n))( ii) (6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^(n))

    If sqrt(1-x^(2n))+sqrt(1-y^(2n))=a^(n)(x^(n)-y^(n)) prove that y^(n-1)*sqrt(1-x^(2n))dy=x^(n-1)sqrt(1-y^(2n))dx

    If |[x^(n-1), x^(n+1), x^(n+2)] ,[y^(n-1), y^(n+1), y^(n+2)], [z^(n-1), z^(n+1), z^(n+2)]|= (x-y)(y-z)(z-x)(x^(-1)+y^(-1)+z^(-1)) then n=

    The solution of dx/dy+y=ye^((n-1)x) (n!=1) is (A)1/(n-1)ln((e^((n-1)x)-1)/e^((n-1)x))=y^2/2+C (B)e^((1-n)x)=1+Ce^((n-1)(y^2/2)) (C) ln(1+Ce^((n-1)(y^2/2)))+nx+1=0 (D) e^((n-1)x)=Ce^((n-1)+(n-1)(y^2/2))+1

    The solution of dx/dy+y=ye^((n-1)x) (n!=1) is (A)1/(n-1)ln((e^((n-1)x)-1)/e^((n-1)x))=y^2/2+C (B)e^((1-n)x)=1+Ce^((n-1)(y^2/2)) (C) ln(1+Ce^((n-1)(y^2/2)))+nx+1=0 (D) e^((n-1)x)=Ce^((n-1)+(n-1)(y^2/2))+1