Home
Class 14
MATHS
If x = 1/(sqrt(2) - 1), then the value o...

If `x = 1/(sqrt(2) - 1)`, then the value of `x^2 - 6 + 1/(x^2)` is :

A

0

B

1

C

`sqrt(2)`

D

can't be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 - 6 + \frac{1}{x^2} \) given that \( x = \frac{1}{\sqrt{2} - 1} \). ### Step 1: Rationalize \( x \) We start with the expression for \( x \): \[ x = \frac{1}{\sqrt{2} - 1} \] To rationalize the denominator, we multiply the numerator and the denominator by \( \sqrt{2} + 1 \): \[ x = \frac{1 \cdot (\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \frac{\sqrt{2} + 1}{2 - 1} = \sqrt{2} + 1 \] ### Step 2: Find \( \frac{1}{x} \) Next, we find \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{\sqrt{2} + 1} \] Again, we rationalize the denominator: \[ \frac{1}{x} = \frac{1 \cdot (\sqrt{2} - 1)}{(\sqrt{2} + 1)(\sqrt{2} - 1)} = \frac{\sqrt{2} - 1}{2 - 1} = \sqrt{2} - 1 \] ### Step 3: Calculate \( x + \frac{1}{x} \) Now, we can find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = (\sqrt{2} + 1) + (\sqrt{2} - 1) = 2\sqrt{2} \] ### Step 4: Find \( x^2 + \frac{1}{x^2} \) Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \), we can find \( x^2 + \frac{1}{x^2} \): \[ (x + \frac{1}{x})^2 = x^2 + 2 + \frac{1}{x^2} \] Substituting \( x + \frac{1}{x} = 2\sqrt{2} \): \[ (2\sqrt{2})^2 = x^2 + 2 + \frac{1}{x^2} \] \[ 8 = x^2 + 2 + \frac{1}{x^2} \] Thus, \[ x^2 + \frac{1}{x^2} = 8 - 2 = 6 \] ### Step 5: Calculate \( x^2 - 6 + \frac{1}{x^2} \) Now we substitute \( x^2 + \frac{1}{x^2} \) into the expression we need to evaluate: \[ x^2 - 6 + \frac{1}{x^2} = 6 - 6 = 0 \] ### Final Answer The value of \( x^2 - 6 + \frac{1}{x^2} \) is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.7|12 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise PRACTICE EXERCISE|60 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.5|9 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • GEOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|52 Videos

Similar Questions

Explore conceptually related problems

If x=1+sqrt(2), then the value of (x-(1)/(x))^(2) is

If x=(1)/(3-2sqrt(2)) ,then the value of ((1)/(x))^(2) is

Knowledge Check

  • If x = ( sqrt(2) + 1)/(sqrt(2) - 1), y = ( sqrt(2) - 1)/( sqrt(2) + 1) then the value of ( x^(2) + 6xy + y^(2))/(x^(2) - 6xy + y^(2)) is

    A
    `(5)/( 7)`
    B
    `(5)/(3)`
    C
    `(10)/(7)`
    D
    `(10)/(3)`
  • If x = (sqrt2-1 ) ^(-(1)/(2)) then the value of (x ^(2) - (1)/(x ^(2))) is

    A
    2
    B
    `-2 sqrt2`
    C
    `2 sqrt2`
    D
    `-sqrt2`
  • If x=2+sqrt(3) , then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    A
    `(2)/(3)`
    B
    `(3)/(4)`
    C
    `(4)/(5)`
    D
    `(3)/(5)`
  • Similar Questions

    Explore conceptually related problems

    If x - (1)/( x) = sqrt21, then the value of (x ^(2) + (1)/( x ^(2))) (x + (1)/(x)) is

    If x = 2 + sqrt3, then the value of (x ^(2)-x + 1)/(x ^(2) + x + 1) is

    If x = (sqrt2)/(2) , then the value of (1 + x )/( 1 + sqrt (1 + x )) + (1-x )/( 1 - sqrt (1 - x)) is equal to

    If (x^2+1/x^2)=6 then the value of (x-1/x) is

    If (x+(1)/(x))=2 , then the value of (x^(6)+(1)/(x^(6))) is :