Home
Class 14
MATHS
What is the value of : (sin(90^(@)-th...

What is the value of :
`(sin(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)"cosec "(90^(@)+theta))`:

A

`sin theta`

B

`cos theta`

C

1

D

`(1)/(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sin(90^\circ - \theta) \sec(180^\circ - \theta) \sin(-\theta)}{\sin(180^\circ + \theta) \cot(360^\circ - \theta) \csc(90^\circ + \theta)}, \] we will evaluate each trigonometric function step by step. ### Step 1: Simplify \(\sin(90^\circ - \theta)\) Using the co-function identity, we know that: \[ \sin(90^\circ - \theta) = \cos(\theta). \] ### Step 2: Simplify \(\sec(180^\circ - \theta)\) The secant function is the reciprocal of cosine. Thus: \[ \sec(180^\circ - \theta) = \frac{1}{\cos(180^\circ - \theta)}. \] Since \(\cos(180^\circ - \theta) = -\cos(\theta)\), we have: \[ \sec(180^\circ - \theta) = -\frac{1}{\cos(\theta)}. \] ### Step 3: Simplify \(\sin(-\theta)\) Using the odd function property of sine, we find: \[ \sin(-\theta) = -\sin(\theta). \] ### Step 4: Substitute into the numerator Now substituting these results into the numerator: \[ \sin(90^\circ - \theta) \sec(180^\circ - \theta) \sin(-\theta) = \cos(\theta) \left(-\frac{1}{\cos(\theta)}\right)(-\sin(\theta)). \] This simplifies to: \[ \cos(\theta) \left(-\frac{1}{\cos(\theta)}\right)(-\sin(\theta)) = \sin(\theta). \] ### Step 5: Simplify \(\sin(180^\circ + \theta)\) Using the sine addition formula, we have: \[ \sin(180^\circ + \theta) = -\sin(\theta). \] ### Step 6: Simplify \(\cot(360^\circ - \theta)\) Using the cotangent identity, we find: \[ \cot(360^\circ - \theta) = \cot(-\theta) = -\cot(\theta). \] ### Step 7: Simplify \(\csc(90^\circ + \theta)\) Using the cosecant identity, we have: \[ \csc(90^\circ + \theta) = \sec(\theta). \] ### Step 8: Substitute into the denominator Now substituting these results into the denominator: \[ \sin(180^\circ + \theta) \cot(360^\circ - \theta) \csc(90^\circ + \theta) = (-\sin(\theta))(-\cot(\theta))(\sec(\theta)). \] This simplifies to: \[ \sin(\theta) \cot(\theta) \sec(\theta). \] ### Step 9: Final expression Now the entire expression becomes: \[ \frac{\sin(\theta)}{\sin(\theta) \cot(\theta) \sec(\theta)}. \] ### Step 10: Simplifying the expression Since \(\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}\) and \(\sec(\theta) = \frac{1}{\cos(\theta)}\), we can rewrite the denominator: \[ \sin(\theta) \cdot \frac{\cos(\theta)}{\sin(\theta)} \cdot \frac{1}{\cos(\theta)} = 1. \] Thus, the expression simplifies to: \[ \frac{\sin(\theta)}{1} = \sin(\theta). \] ### Conclusion The value of the expression is: \[ \sin(\theta). \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

Prove that: (tan(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)csc(90^(@)-theta))=1

What is the value of (tan (90^@-theta) sec (180^@-theta)sin(-theta))/(sin (180^@+theta) cot (360^@-theta) "cosec"(90^@-theta)) ?

Knowledge Check

  • (cos(90^(@)-theta).sec(90^(@)-theta).tantheta)/(cosec(90^(@)-theta).sin(90^(@)-theta).cot(90^(@)-theta))=?

    A
    1
    B
    2
    C
    3
    D
    `-1`
  • The value of (sin(180^(@)+theta)cos(90^(@)+theta)tan(270^(@)-theta)cot(360^(@)-theta))/(sin(360^(@)-theta)cos(360^(@)+theta)cosec(-theta)sin(270^(@)+theta))

    A
    1
    B
    2
    C
    3
    D
    4
  • The value of (cos(90^(@)theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cosec(-theta)cos(270^(@)-theta)tan(180^(@)+theta)) is

    A
    `cos theta`
    B
    `sin theta`
    C
    `tan theta`
    D
    `cot theta`
  • Similar Questions

    Explore conceptually related problems

    (cot(90^(@)-theta)sin(180^(@)-theta)sec(360^(@)-theta))/(tan(180^(@)+theta)sec(-theta)cos(90^(@)+theta))

    (cos theta)/(sin(90^(@)+theta))+(sin(-theta))/(sin(180^(@)+theta))-(tan(90^(@)+theta))/(cot theta)

    (sin(270^(@)+theta).cos(360^(@)+theta).tan(170^(@)+theta))/(cos(180^(@)+theta).sin(270^(@)-theta).cot(260^(@)+theta))=?

    (COS(90^(@)+theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cos ec(-theta)cos(270^(@)-theta)tan(180^(@)+theta))

    The value of (cos(90^(0)-theta)sec(90^(@)-theta)tan theta)/(csc(90^(@)-theta)sin(90^(@)-theta)cot(90^(@)-theta))+(tan(90^(@)-theta))/(cot theta) is 1(b)-1(c)2(d)-2