Home
Class 14
MATHS
(sec^(2)theta-1)/(tan^(2)theta)=?...

`(sec^(2)theta-1)/(tan^(2)theta)=?`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sec^2 \theta - 1) / \tan^2 \theta\), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know from trigonometric identities that: \[ \sec^2 \theta - \tan^2 \theta = 1 \] This can be rearranged to express \(\sec^2 \theta\): \[ \sec^2 \theta = 1 + \tan^2 \theta \] ### Step 2: Substitute \(\sec^2 \theta\) in the Expression Now, substitute \(\sec^2 \theta\) in the original expression: \[ \frac{\sec^2 \theta - 1}{\tan^2 \theta} = \frac{(1 + \tan^2 \theta) - 1}{\tan^2 \theta} \] ### Step 3: Simplify the Numerator The numerator simplifies as follows: \[ (1 + \tan^2 \theta) - 1 = \tan^2 \theta \] So, we can rewrite the expression: \[ \frac{\tan^2 \theta}{\tan^2 \theta} \] ### Step 4: Simplify the Fraction Now, simplifying the fraction gives us: \[ \frac{\tan^2 \theta}{\tan^2 \theta} = 1 \] ### Final Answer Thus, the value of \((\sec^2 \theta - 1) / \tan^2 \theta\) is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

Find the values of the following expression. (sec^2theta-1)/tan^2theta =?

If theta=45^(@) then (tan^(2)theta-1)/(sec^(2)theta)=

Knowledge Check

  • The determinant |(sec^(2)theta, tan^(2)theta,1),(tan^(2)theta, sec^(2)theta, -1),(12,10,2)| equals

    A
    `2sin^(2)theta`
    B
    `12sec^(2)theta-10tan^(2)theta`
    C
    `12sec^(2)theta-10tan^(2)theta+5`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If cos theta=(1)/(2), find the value of (2sec theta)/(1+tan^(2)theta)

    (1+tan^(2)theta)/(sec^(2)theta)=

    Prove that- sec^2theta-1-tan^2theta=0

    If x=3sec^(2)theta-1 and y=tan^(2)theta-2 find x-3y

    Eliminate theta from the relations a sec theta=1-b tan theta,a^(2)sec^(2)theta=5+b^(2)tan^(2)theta

    sec^(2)theta=1-tan2 theta

    (2sin theta tan theta(1-tan theta)+2sin theta sec^(2)theta)/((1+tan theta)^(2))=(2sin theta)/(1+tan theta)