Home
Class 11
MATHS
Evaluate : (i) ""^(20)P(4) (ii...

Evaluate :
(i) `""^(20)P_(4)`
(ii) `""^(75)P_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the permutations given in the question, we will use the formula for permutations, which is defined as: \[ _nP_r = \frac{n!}{(n-r)!} \] where \( n \) is the total number of items, \( r \) is the number of items to choose, and \( ! \) denotes factorial. ### Part (i): Evaluate \( 20P4 \) 1. **Identify \( n \) and \( r \)**: - Here, \( n = 20 \) and \( r = 4 \). 2. **Apply the permutation formula**: \[ 20P4 = \frac{20!}{(20-4)!} = \frac{20!}{16!} \] 3. **Simplify the factorial expression**: - We can expand \( 20! \) as follows: \[ 20! = 20 \times 19 \times 18 \times 17 \times 16! \] - Therefore, substituting back, we get: \[ 20P4 = \frac{20 \times 19 \times 18 \times 17 \times 16!}{16!} \] 4. **Cancel \( 16! \)**: - The \( 16! \) in the numerator and denominator cancels out: \[ 20P4 = 20 \times 19 \times 18 \times 17 \] 5. **Calculate the product**: - Now we compute: \[ 20 \times 19 = 380 \] \[ 380 \times 18 = 6840 \] \[ 6840 \times 17 = 116280 \] Thus, \( 20P4 = 116280 \). ### Part (ii): Evaluate \( 75P2 \) 1. **Identify \( n \) and \( r \)**: - Here, \( n = 75 \) and \( r = 2 \). 2. **Apply the permutation formula**: \[ 75P2 = \frac{75!}{(75-2)!} = \frac{75!}{73!} \] 3. **Simplify the factorial expression**: - We can expand \( 75! \) as follows: \[ 75! = 75 \times 74 \times 73! \] - Therefore, substituting back, we get: \[ 75P2 = \frac{75 \times 74 \times 73!}{73!} \] 4. **Cancel \( 73! \)**: - The \( 73! \) in the numerator and denominator cancels out: \[ 75P2 = 75 \times 74 \] 5. **Calculate the product**: - Now we compute: \[ 75 \times 74 = 5550 \] Thus, \( 75P2 = 5550 \). ### Final Answers: - (i) \( 20P4 = 116280 \) - (ii) \( 75P2 = 5550 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (d) Short Answer Type Questions|16 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (d) Long Answer Type Questions - I|21 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Long Answer Type Questions - I|10 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate "(i) "^(12)P_(4) " (ii) "^(75)P_(2) " (iii) "^(8)P_(8)

Evaluate the following : (i) ""^(8)P_(5) (ii) ""^(10)P_(3) (iii) ""^(12)C_(7) (iv) ""^(9)C_(0) .

Evaluate: "(i) "^(10)P_(4) " (ii) "^(62)P_(3)" (iii) "^(6)P_(6) " (iv) "^(9)P_(0)

Evaluate the following: ""^(20) P_(4)

Evaluate (i) ""^(8)P_(3) (ii) ""^(12)P_(2)

Find n if ""^(n) P_(4) = 20 xx ""^(n) P_(2)

Evaluate the following: (i) .^(9)P_(3) (ii) .^(10)P_(2) (iii) .^(12)P_(4)

Find thevalue of 'r': (i) .^(12)P_(r) = 1320 (ii) .^(56)P_(r+6): .^(54)P_(r+3) = 30800 :1 (iii) 5.^(4)P_(r) = 6.^(5)P_(r-1) (iv) .^(9)P_(5) +5 .^(9)P_(4) = 10 P_(r)

Find 'r' when : (i) ""^(10)P_(r )=2 ""^(9)P_(r ) (ii) ""^(11)P_(r )= ""^(12)P_(r-1) .

Find the value of n such that "(i) "^(n)P_(5) =42 xx ""^(n)P_(3), n gt 4 " (ii) "(""^(n)P_(4))/(" "^(n-1)P_(4))=(5)/(3), n gt 4.