Home
Class 12
MATHS
Construct a matrix A=[a(ij)](2xx2) whose...

Construct a matrix `A=[a_(ij)]_(2xx2)` whose elements `a_(ij)` are given by `a_(ij)=e^(2ix) sin jx`.

Text Solution

AI Generated Solution

The correct Answer is:
To construct a matrix \( A = [a_{ij}]_{2 \times 2} \) whose elements are defined by \( a_{ij} = e^{2ix} \sin(jx) \), we will follow these steps: ### Step 1: Define the Matrix We need to create a \( 2 \times 2 \) matrix, which means we will have four elements: \( a_{11}, a_{12}, a_{21}, a_{22} \). ### Step 2: Calculate Each Element - **Element \( a_{11} \)**: \[ a_{11} = e^{2i \cdot x} \sin(1 \cdot x) = e^{2ix} \sin(x) \] - **Element \( a_{12} \)**: \[ a_{12} = e^{2i \cdot x} \sin(2 \cdot x) = e^{2ix} \sin(2x) \] - **Element \( a_{21} \)**: \[ a_{21} = e^{2 \cdot 2i \cdot x} \sin(1 \cdot x) = e^{4ix} \sin(x) \] - **Element \( a_{22} \)**: \[ a_{22} = e^{2 \cdot 2i \cdot x} \sin(2 \cdot x) = e^{4ix} \sin(2x) \] ### Step 3: Construct the Matrix Now we can write the matrix \( A \) using the calculated elements: \[ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} e^{2ix} \sin(x) & e^{2ix} \sin(2x) \\ e^{4ix} \sin(x) & e^{4ix} \sin(2x) \end{bmatrix} \] ### Final Matrix Thus, the final matrix \( A \) is: \[ A = \begin{bmatrix} e^{2ix} \sin(x) & e^{2ix} \sin(2x) \\ e^{4ix} \sin(x) & e^{4ix} \sin(2x) \end{bmatrix} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (a) Short Answer Type Questions|21 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (b) Short Answer Type Questions|5 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Illustrative Examples|5 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Construct a 2xx2 matrix A=[a_(ij)] whose elements a_(ij) are given by: (i) a_(ij)=e^(2ix)sin xj

Write the element a_(12) of the matrix A=[a_(ij)]_(2xx2) , whose elements a_(ij) are given by a_(ij)=e^(2ix)sinjx .

Knowledge Check

  • A matrix A=[a_(ij)]_(mxxn) is

    A
    Horizontal matrix if `mgtn`
    B
    Horizontal matrix if `mltn`
    C
    Vertical matrix if `mgtn`
    D
    Vertical matrix if `mltn`
  • A 2xx2 matrix whose elements a_(ij) are given by a_(ij)=i-j is

    A
    `[(0,1),(1,0)]`
    B
    `[(0,-1),(1,0)]`
    C
    `[(-1,0),(0,1)]`
    D
    `[(0,1),(-1,0)]`
  • Similar Questions

    Explore conceptually related problems

    Construct a 4xx3 matrix A=[a_(ij)] whose elements a_(ij) are given by: (i) a_(ij)=2i+(i)/(j)

    construct 3^(*)4 matrix A=[a_(ij)] whose elements a_(ij) are given by: a_(ij)=|-3i+j|

    Write the element a_(12) of the matrix A=[a_(ij)]_(2X2) ; whose each ēlements are given by a_(ij)=e^(2ix)sin jx.

    Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i.j

    Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i/j

    Construct a 3xx2 matrix A=[a_(ij)] whose elements are given by a_(ij)=e^(ix)sin jx (ii) a_(ij)=e^(-ix)cos((pi)/(2)i+jx)