Home
Class 12
MATHS
Let A=[0 1 0 0]show that (a I+b A)^n=a^...

Let `A=[0 1 0 0]`show that `(a I+b A)^n=a^n I+n a^(n-1)b A`, where I is the identitymatrix of order 2 and `n in N`.

Answer

Step by step text solution for Let A=[0 1 0 0]show that (a I+b A)^n=a^n I+n a^(n-1)b A, where I is the identitymatrix of order 2 and n in N. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise|7 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 3.4)|14 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Let A=[[0,10,0]] show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA where I is the identity matrix of order 2 and n in N

If I_(n) is the identity matrix of order n then (I_(n))^(-1)=

Knowledge Check

  • If (5 + 2 sqrt(6))^(n) = I + f , where I in N, n in N and 0 le f le 1, then I equals

    A
    `(1)/(f) -f`
    B
    `(1)/(1 +f) -f`
    C
    `(1)/(1 - f)- f`
    D
    `(1)/(1 - f) +f`
  • Similar Questions

    Explore conceptually related problems

    If A is idempotent matrix, then show that (A+I)^(n) = I+(2^(n)-1) A, AAn in N, where I is the identity matrix having the same order of A.

    Let A and B be matrices of order n. Provce that if (I - AB) is invertible, (I - BA) is also invertible and (I-BA)^(-1) = I + B (I- AB)^(-1)A, where I be the dientity matrix of order n.

    If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

    If A is a non zero square matrix of order n with det(I+A)!=0 and A^(3)=0, where I,O are unit and null matrices of order n xx n respectively then (I+A)^(-1)=

    If I_n is the identity matrix of order n then (I_n)^-1 (A) does not exist (B) =0 (C) =I_n (D) =nI_n

    Evaluate sum_(n=1)^(13)(i^(n)+i^(n+1)), where n in N

    Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N