Home
Class 12
MATHS
"The value of": i^(1//3) is...

`"The value of"`: `i^(1//3)` is

A

`(sqrt3+i)/(2)`

B

`(sqrt3-i)/2`

C

`(1+isqrt3)/2`

D

`(1-isqrt3)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( i^{1/3} \), we can follow these steps: ### Step 1: Express \( i \) in exponential form The complex number \( i \) can be expressed in polar form as: \[ i = e^{i\frac{\pi}{2}} \] This is because \( i \) is located at an angle of \( \frac{\pi}{2} \) radians on the complex plane. ### Step 2: Apply the exponent Now, we need to find \( i^{1/3} \): \[ i^{1/3} = \left(e^{i\frac{\pi}{2}}\right)^{1/3} \] Using the property of exponents, we can simplify this to: \[ i^{1/3} = e^{i\frac{\pi}{6}} \] ### Step 3: Find the principal value The principal value of \( e^{i\frac{\pi}{6}} \) can be expressed in rectangular form: \[ e^{i\frac{\pi}{6}} = \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right) \] Calculating the cosine and sine values: \[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Thus, \[ e^{i\frac{\pi}{6}} = \frac{\sqrt{3}}{2} + i\frac{1}{2} \] ### Step 4: Consider other cube roots Since we are looking for the cube roots, we need to consider all possible cube roots. The general formula for the \( n \)-th roots of a complex number is given by: \[ z_k = r^{1/n} \left( \cos\left(\frac{\theta + 2k\pi}{n}\right) + i \sin\left(\frac{\theta + 2k\pi}{n}\right) \right) \] where \( k = 0, 1, 2, \ldots, n-1 \). For our case, \( n = 3 \): 1. For \( k = 0 \): \[ z_0 = e^{i\frac{\pi}{6}} = \frac{\sqrt{3}}{2} + i\frac{1}{2} \] 2. For \( k = 1 \): \[ z_1 = e^{i\left(\frac{\pi}{6} + \frac{2\pi}{3}\right)} = e^{i\frac{5\pi}{6}} = -\frac{\sqrt{3}}{2} + i\frac{1}{2} \] 3. For \( k = 2 \): \[ z_2 = e^{i\left(\frac{\pi}{6} + \frac{4\pi}{3}\right)} = e^{i\frac{3\pi}{2}} = -i \] ### Final Result The three cube roots of \( i \) are: \[ \frac{\sqrt{3}}{2} + i\frac{1}{2}, \quad -\frac{\sqrt{3}}{2} + i\frac{1}{2}, \quad -i \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -3)|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -4)|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -1)|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The value of i^(1+i) is

Find the value of : (1-i)^(1//3) .

Knowledge Check

  • The value of (1+i)^3+(1-i)^3 is

    A
    1
    B
    `-2`
    C
    0
    D
    `-4`
  • Similar Questions

    Explore conceptually related problems

    The value of (i^(3)+i^(4)) is

    All the values of (-8i)^((1)/(3)) is

    The value of (1+i)/(1-i) is

    The values of (-i)^((1)/(3)) are

    The value of (1+i sqrt(3))

    Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx The value of I^(-1) .

    Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx. The value of I^(-1) .