Home
Class 12
MATHS
The coefficient of x in f (x) = |{:(x...

The coefficient of x in
f (x) = `|{:(x , 1 + sin x , cos x ),(1 , log (1+x),2),(x^(2) , 1 + x^(2),0):}|, - 1 lt x le 1 `, is

A

1

B

`-2`

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x \) in the function \[ f(x) = \begin{vmatrix} x & 1 + \sin x & \cos x \\ 1 & \log(1+x) & 2 \\ x^2 & 1 + x^2 & 0 \end{vmatrix} \] we will evaluate the determinant step by step. ### Step 1: Set up the determinant We start with the determinant: \[ D = \begin{vmatrix} x & 1 + \sin x & \cos x \\ 1 & \log(1+x) & 2 \\ x^2 & 1 + x^2 & 0 \end{vmatrix} \] ### Step 2: Expand the determinant Using the formula for the determinant of a \( 3 \times 3 \) matrix, we expand \( D \): \[ D = x \begin{vmatrix} \log(1+x) & 2 \\ 1 + x^2 & 0 \end{vmatrix} - (1 + \sin x) \begin{vmatrix} 1 & 2 \\ x^2 & 0 \end{vmatrix} + \cos x \begin{vmatrix} 1 & \log(1+x) \\ x^2 & 1 + x^2 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. Calculate the first determinant: \[ \begin{vmatrix} \log(1+x) & 2 \\ 1 + x^2 & 0 \end{vmatrix} = 0 \cdot \log(1+x) - 2(1 + x^2) = -2(1 + x^2) \] 2. Calculate the second determinant: \[ \begin{vmatrix} 1 & 2 \\ x^2 & 0 \end{vmatrix} = 1 \cdot 0 - 2x^2 = -2x^2 \] 3. Calculate the third determinant: \[ \begin{vmatrix} 1 & \log(1+x) \\ x^2 & 1 + x^2 \end{vmatrix} = 1(1 + x^2) - x^2 \log(1+x) = 1 + x^2 - x^2 \log(1+x) \] ### Step 4: Substitute back into the determinant Substituting these back into the expression for \( D \): \[ D = x(-2(1 + x^2)) - (1 + \sin x)(-2x^2) + \cos x(1 + x^2 - x^2 \log(1+x)) \] ### Step 5: Simplify the expression Now we simplify \( D \): \[ D = -2x - 2x^3 + 2x^2 + 2x^2 \sin x + \cos x(1 + x^2 - x^2 \log(1+x)) \] ### Step 6: Find the coefficient of \( x \) To find the coefficient of \( x \), we look at the terms in \( D \): - From \( -2x \), the coefficient is \( -2 \). - The other terms do not contribute to the coefficient of \( x \). Thus, the coefficient of \( x \) in \( f(x) \) is: \[ \text{Coefficient of } x = -2 \] ### Final Answer The coefficient of \( x \) in \( f(x) \) is \( -2 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -1 CONCEPT BUILDER|65 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x in f(x) = abs({:(x , 1 + sinx, cosx),(1, log (1 + x),2),(x^2, 1 + x^2 , 0):}), -1 lt x " is " le 1 p then absp is

Coefficient of x in f(x)=|(x,(1+sinx)^3,cosx),(1,log(1+x),2),(x^2,(1+x)^2,0)| is

Knowledge Check

  • Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

    A
    f has a local maximum at x=0
    B
    f has a local minimum at x=0
    C
    f is increasing in (0, 1/2)
    D
    f is decreasing in (0,1/2)
  • If f(x)={:{(x", for " 0 le x lt 1),(2", for " x=1),(x+1", for " 1 lt x le 2):} , then f is

    A
    f is continuous at `x=1`
    B
    f is discontinuous at `x=1`
    C
    `underset(x rarr 1^(-))lim f(x)=2`
    D
    `underset(x rarr 1^(+))lim f(x)=1`
  • If f (x)= {{:(sin ^(-1) (sin x) , x gt 0),( (pi)/(2), x = 0), (cos ^(-1) (cos x) , x lt 0):}, then

    A
    `x =0` is a point of maxima
    B
    `f (x)` is continous `AA x in R`
    C
    glolab maximum vlaue of `f (x) AA x in R` is `pi`
    D
    global minimum vlaue of `f (x) AA x in R` is 0
  • Similar Questions

    Explore conceptually related problems

    2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1

    Prove that : 2sin^(-1). ((2x )/(1+x^(2))), -1 le x lt 1

    If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

    f: [0,1] to R is defined as f(x) {{:( x^(3) (1-x) sin ((1)/(x^(2))), 0 lt x le 1),( 0, x=0):}

    The function f(x) = 1 + x (sin x) [cos x], 0 lt x le (pi)/(2) (where [.] is G.I.F.)