Home
Class 12
MATHS
If 1,omega , omega^2 are the cube roots...

If `1,omega , omega^2` are the cube roots of unity , then `Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)|` is equal to :

A

`omega^(2)`

B

0

C

1

D

`omega`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If n=3k and 1,omega,omega^2 are the cube roots of unity, then Delta=|(1,omega^n,omega^(2n)),(omega^(2n),1, omega^n),(omega^n,omega^(2n), 1)| has the value

If omega is cube root of unity, then | {:(1, omega, omega ^(2)),( omega, omega ^(2) , 1),( omega ^(2) , 1, omega):}| is equal to

Knowledge Check

  • If 1, omega and omega^2 are the cube roots of unity, then Delta=|(1, omega^n, omega^(2n)),(omega^n, omega^(2n),1),(omega^(2n),1,omega^n)| is equal to

    A
    0
    B
    1
    C
    `omega`
    D
    `omega^2`
  • If 1omega,omega^(2) are the cube roots of unity, then |(1,omega^(n),omega^(2n)),(omega^(n),omega^(2n),1),(omega^(2n),1,omega^(n))| is equal to

    A
    0
    B
    1
    C
    `omega`
    D
    `omega^(2)`
  • If omega is cube root of unity, then Delta=|(x+1,omega,omega^(2)),(omega,x+omega^(2),1),(omega^(2),1,x+omega)|=

    A
    `x^(3)+1`
    B
    `x^(3)+omega`
    C
    `x^(3)+omega^(2)`
    D
    `x^(3)`
  • Similar Questions

    Explore conceptually related problems

    If n ne 3k and 1 , omega , omega ^(2) are the cube roots of units , then Delta =Delta=|(1,omega^(n),omega^(2n)),(omega^(2n),1,omega^(n)),(omega^(n),omega^(2n),1)| has the value

    If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

    If n ne 3k and 1 , omega , omega^2 are the cube roots of unity then Delta=|(1,omega^n,omega^(2n)),(omega^(2n),1,omega),(omega^n,omega^(2n),1)| has the value

    If omega is a cube root of unity, then |(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)| is equal to

    If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) ( 1+ omega^(2)) ( 1+ omega^(3)) ( 1+ omega + omega^(2)) is equal to :