Home
Class 12
MATHS
If veca =hati + hatj - hatk, vecb = 2hat...

If `veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk` and `vec c = hati + alpha hatj` are coplanar vector , then the value of `alpha` is :

A

`-4/3`

B

`3/4`

C

`4/3`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) such that the vectors \( \vec{a} = \hat{i} + \hat{j} - \hat{k} \), \( \vec{b} = 2\hat{i} + 3\hat{j} + \hat{k} \), and \( \vec{c} = \hat{i} + \alpha \hat{j} \) are coplanar. The condition for three vectors to be coplanar is that their scalar triple product must be zero. The scalar triple product of vectors \( \vec{a}, \vec{b}, \vec{c} \) can be computed using the determinant of a matrix formed by these vectors. ### Step 1: Write the vectors in matrix form We can express the vectors in a matrix as follows: \[ \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 1 & \alpha & 0 \end{vmatrix} \] ### Step 2: Calculate the determinant We will calculate the determinant of the matrix: \[ D = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 1 & \alpha & 0 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix, we have: \[ D = 1 \cdot \begin{vmatrix} 3 & 1 \\ \alpha & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 3 \\ 1 & \alpha \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now, we calculate each of the 2x2 determinants: 1. \( \begin{vmatrix} 3 & 1 \\ \alpha & 0 \end{vmatrix} = (3)(0) - (1)(\alpha) = -\alpha \) 2. \( \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = (2)(0) - (1)(1) = -1 \) 3. \( \begin{vmatrix} 2 & 3 \\ 1 & \alpha \end{vmatrix} = (2)(\alpha) - (3)(1) = 2\alpha - 3 \) ### Step 4: Substitute back into the determinant Substituting these values back into the determinant expression: \[ D = 1(-\alpha) - 1(-1) - 1(2\alpha - 3) \] This simplifies to: \[ D = -\alpha + 1 - (2\alpha - 3) \] ### Step 5: Simplify the expression Now, simplify the expression: \[ D = -\alpha + 1 - 2\alpha + 3 = -3\alpha + 4 \] ### Step 6: Set the determinant to zero For the vectors to be coplanar, we set the determinant equal to zero: \[ -3\alpha + 4 = 0 \] ### Step 7: Solve for \( \alpha \) Now, solve for \( \alpha \): \[ -3\alpha = -4 \implies \alpha = \frac{4}{3} \] Thus, the value of \( \alpha \) is \( \frac{4}{3} \). ### Final Answer The value of \( \alpha \) is \( \frac{4}{3} \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

If veca = hati - hatj + hatk, vecb= 2 hati + hatj -hatk and vec c = lamda hati -hatj+ lamda hatk are coplanar, find the value of lamda.

If vecA = 2 hati + hatj + hatk and vecB = hati + hatj + hatk are two vectores, then the unit vector is

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

If veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand vec c = hati - 2 hatj - 2 hatk, then evaluate vec c. (veca xx vecb)

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |

  2. If vecp,vecq and vecr are perpendicular to vecq + vecr , vec r + vecp...

    Text Solution

    |

  3. If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = h...

    Text Solution

    |

  4. If hat(i)+hat(j), hat(j)+hat(k), hat(i)+hat(k) are the position vector...

    Text Solution

    |

  5. If veca and vecb are non colinear vectors, then the value of alpha for...

    Text Solution

    |

  6. If angle between veca = hati - 2hatj + 3hatk and vecb = 2hati + hatj ...

    Text Solution

    |

  7. If veca, vecb,vecc are non-coplanar vectors and lambda is a real numbe...

    Text Solution

    |

  8. Find the unit vector parallel to the resultant vector of 2hati+4hatj-5...

    Text Solution

    |

  9. If the middle points of sides BC, CA and AB of triangle ABC are respec...

    Text Solution

    |

  10. Find the length diagonal AC of a prallelogram ABCD whose two adjacent ...

    Text Solution

    |

  11. If f is the centre of a circle inscribed in a triangle ABC, then |vec...

    Text Solution

    |

  12. Let vec a, vec b and vec c are vectors of magnitude 3,4,5 respectively...

    Text Solution

    |

  13. If veca , vecb , vec c are any three coplanar unit vectors , then :

    Text Solution

    |

  14. The vector veca=alpha hati+2hatj+betahatk lies in the plane of vectors...

    Text Solution

    |

  15. Let vecu= hati+hatj, vecv = hati -hatj and vecw = hati+2hatj+3hatk. I...

    Text Solution

    |

  16. If vectors a=4hat(i)-3hat(j)+6hat(k) and vector b=-2hat(i)+2hat(j)-hat...

    Text Solution

    |

  17. A vector of magnitude 14 lies in the xy-plane and makes an angle of 60...

    Text Solution

    |

  18. If veca,vecb,vec c are unit vectors such that veca+vecb+vec c= vec0 fi...

    Text Solution

    |

  19. The two variable vectors 3xhati+yhatj-3hatk and xhati-4yhatj+4hatk are...

    Text Solution

    |

  20. Angle between the vectors sqrt3(veca xx vec b) " and " vec b - (veca ....

    Text Solution

    |