Home
Class 12
MATHS
If veca =hati + hatj - hatk, vecb = 2hat...

If `veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk` and `vec c = hati + alpha hatj` are coplanar vector , then the value of `alpha` is :

A

`-4/3`

B

`3/4`

C

`4/3`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) such that the vectors \( \vec{a} = \hat{i} + \hat{j} - \hat{k} \), \( \vec{b} = 2\hat{i} + 3\hat{j} + \hat{k} \), and \( \vec{c} = \hat{i} + \alpha \hat{j} \) are coplanar. The condition for three vectors to be coplanar is that their scalar triple product must be zero. The scalar triple product of vectors \( \vec{a}, \vec{b}, \vec{c} \) can be computed using the determinant of a matrix formed by these vectors. ### Step 1: Write the vectors in matrix form We can express the vectors in a matrix as follows: \[ \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 1 & \alpha & 0 \end{vmatrix} \] ### Step 2: Calculate the determinant We will calculate the determinant of the matrix: \[ D = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 1 & \alpha & 0 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix, we have: \[ D = 1 \cdot \begin{vmatrix} 3 & 1 \\ \alpha & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 3 \\ 1 & \alpha \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now, we calculate each of the 2x2 determinants: 1. \( \begin{vmatrix} 3 & 1 \\ \alpha & 0 \end{vmatrix} = (3)(0) - (1)(\alpha) = -\alpha \) 2. \( \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = (2)(0) - (1)(1) = -1 \) 3. \( \begin{vmatrix} 2 & 3 \\ 1 & \alpha \end{vmatrix} = (2)(\alpha) - (3)(1) = 2\alpha - 3 \) ### Step 4: Substitute back into the determinant Substituting these values back into the determinant expression: \[ D = 1(-\alpha) - 1(-1) - 1(2\alpha - 3) \] This simplifies to: \[ D = -\alpha + 1 - (2\alpha - 3) \] ### Step 5: Simplify the expression Now, simplify the expression: \[ D = -\alpha + 1 - 2\alpha + 3 = -3\alpha + 4 \] ### Step 6: Set the determinant to zero For the vectors to be coplanar, we set the determinant equal to zero: \[ -3\alpha + 4 = 0 \] ### Step 7: Solve for \( \alpha \) Now, solve for \( \alpha \): \[ -3\alpha = -4 \implies \alpha = \frac{4}{3} \] Thus, the value of \( \alpha \) is \( \frac{4}{3} \). ### Final Answer The value of \( \alpha \) is \( \frac{4}{3} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

If veca = hati - hatj + hatk, vecb= 2 hati + hatj -hatk and vec c = lamda hati -hatj+ lamda hatk are coplanar, find the value of lamda.

If veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand vec c = hati - 2 hatj - 2 hatk, then evaluate vec c. (veca xx vecb)

Knowledge Check

  • If oversettoa=hati+hatj-hatk, oversettob=2hati+3hatj+hatk , and oversettoc=hati+alphahatj are coplanar vectors, the value of alpha is :

    A
    `-4/3`
    B
    `3/4`
    C
    `4/3`
    D
    2
  • If vecA = 2 hati + hatj + hatk and vecB = hati + hatj + hatk are two vectores, then the unit vector is

    A
    perpendicular to `vecA is ((-hatj + hatk)/(sqrt2)).`
    B
    parallel to `vecA is ((2hati + hatj + hatk)/(sqrt6)).`
    C
    perpendicular to `vecA is ((-hatj + hatk)/( sqrt2)).`
    D
    parallel to `vecA is ((hati + hatj + hatk)/(sqrt3)).`
  • If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

    A
    2
    B
    3
    C
    1
    D
    4
  • Similar Questions

    Explore conceptually related problems

    If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

    If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

    If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

    The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

    Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by