Home
Class 12
CHEMISTRY
The radius of the second Bohr orbit for...

The radius of the second Bohr orbit for hydrogen atom is : (Plank'c const. `h = 6.6262 xx 10^(-34) Js` , mass electron ` = 9.1091 xx 10^(-31)` Kg , charge of electron ` e = 1.60210 xx 10^(-19)` , permittivity of vaccum ` in_(0) = 8.854185 xx 10^(-12) kg^(-1) m^(-3) A^(2))`

A

`1.65Å`

B

`4.76Å`

C

`0.529Å`

D

`2.12Å`

Text Solution

AI Generated Solution

The correct Answer is:
To find the radius of the second Bohr orbit for a hydrogen atom, we can use the formula derived from Bohr's model of the atom. The formula for the radius of the nth orbit (R_n) is given by: \[ R_n = \frac{n^2 h^2}{4 \pi^2 e^2 m} \] where: - \( R_n \) = radius of the nth orbit - \( n \) = principal quantum number (for the second orbit, \( n = 2 \)) - \( h \) = Planck's constant - \( e \) = charge of the electron - \( m \) = mass of the electron - \( \pi \) = constant (approximately 3.14) However, we can simplify this formula for hydrogen (where \( Z = 1 \)) to: \[ R_n = 0.529 \times n^2 \text{ Å} \] ### Step-by-step Solution: 1. **Identify the values**: - For the second orbit, \( n = 2 \). - The formula simplifies to \( R_n = 0.529 \times n^2 \). 2. **Substitute the value of n**: - Substitute \( n = 2 \) into the formula: \[ R_2 = 0.529 \times (2^2) \] 3. **Calculate \( n^2 \)**: - Calculate \( 2^2 = 4 \). 4. **Calculate the radius**: - Now substitute \( n^2 \) back into the equation: \[ R_2 = 0.529 \times 4 \] - Performing the multiplication: \[ R_2 = 2.116 \text{ Å} \] 5. **Final Result**: - The radius of the second Bohr orbit for the hydrogen atom is \( 2.116 \text{ Å} \).

To find the radius of the second Bohr orbit for a hydrogen atom, we can use the formula derived from Bohr's model of the atom. The formula for the radius of the nth orbit (R_n) is given by: \[ R_n = \frac{n^2 h^2}{4 \pi^2 e^2 m} \] where: - \( R_n \) = radius of the nth orbit - \( n \) = principal quantum number (for the second orbit, \( n = 2 \)) - \( h \) = Planck's constant ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STATES OF MATTER

    DISHA PUBLICATION|Exercise Exercise|104 Videos
  • SURFACE CHEMISTRY

    DISHA PUBLICATION|Exercise Exercise-2 :Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The kinetic energy of an electron is 4.55 xx 10^(-25)J . Calculate the wavelength . [h = 6.6 xx 10^(-34)Js , mass of electron = 9.1 xx 10^(-31)kg]

Calculate the radius of second Bohr orbit in hydrogen atom from the given data. Mass of electron =9.1xx10^(-31)" kg" Charge on the electron =1.6xx10^(-19)C Planck's constant =6.63xx10^(-34)" J-s". Permittivity of free space =8.85xx10^(-12)"C"^(2)//"Nm"^(2) .

Knowledge Check

  • The radius of the second Bohr orbit for hydrogen atom is : (Planck's constant, h = 6.6262 xx 10^(-34) Js , mass of electron = 9.1091 xx 10^(-31) kg , charge of electron e = 1.60210 xx 10^(-19) C , permittivity of vaccum in_0 = 8.854185 xx 10^(-12) kg^(-1) m^(-3) A^2)

    A
    `1.65 Å`
    B
    `4.76 Å`
    C
    `0.529 Å`
    D
    `2.12 Å`
  • The radius of the second Bohr orbit for hydrogen atom is (Planck's constant (h) - 6.6262 xx 10^(-34)Js , mass of electron = 9.1091 xx 10^(-31) kg , charge of electron (e) = 1.60210 xx 10^(-19)C , permitivity of vacuum (in_(0)) = 8.854185 xx 10^(-12) kg^(-1) m^(-3) A^(2))

    A
    `1.65 Å`
    B
    `4.76 Å`
    C
    `0.529 Å`
    D
    `2.12 Å`
  • The radius of the second Bohr orbit for hydrogen atom is (Planck's constant, h = 6.6262 xx 10^(-34) Js mass of electron = 9.1091 xx 10^(-31) kg charge of electron, e = 1.60210 xx 10^(-19) C permitivity of the vacuum, in_(0) = 8.854185 xx 10^(-12) kg^(-1) m^(-3) A^(2) )

    A
    `0.529 Å`
    B
    `2.12 Å`
    C
    `1.65 Å`
    D
    `4.76 Å`
  • Similar Questions

    Explore conceptually related problems

    Radius of the fourth orbit in hydrogen atom is 0.85 nm. Calculate the velocity of the electron in this orbit (mass of electron = 9.1 xx 10^(-31) kg) .

    The kinetic energy of an electron is 4.55 xx 10^(-25) J .The mass of electron is 9.1 xx 10^(-34) kg Calculate velocity of the electron

    The radius of the second Bohr orbit for hydrogen atom is (Planck's Const. h=6.6262xx10^(-34) Js, mass of electron = 9.1091xx10^(-31) kg , charge of electron e=1.60210xx10^(-19) C , permittivity of vacuum in_0=8.854185xx10^(-12) kg^(-1) m^(-3) A^2 )

    The radius of second Bohr orbit for hydrogen atom is ( h= 6.6262 xx 10^(-34)Js , mass of electron =9.1091 xx 10^(-31)kg , charge e= 1.60210 xx 10^(-19)C , permitivity of vacuum, in_(0)= 8.854185 xx 10^(-12)kg^(-1) m^(-3) A^(2) )

    Gyromagnetic ratio of the electron revolving in a circular orbit of hydrogen atom is 8.8 xx 10^(10) C kg^(-1) . What is the mass of the electron ? (Given charge of the electron = 1.6 xx 10^(-19) C)