Home
Class 12
MATHS
"cos"^(-1)("cos"((7pi)/(5)))=...

`"cos"^(-1)("cos"((7pi)/(5)))=`

A

`(3pi)/(5)`

B

`(2pi)/(5)`

C

`(-7pi)/(5)`

D

`(7pi)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos^{-1}(\cos(\frac{7\pi}{5})) \), we can follow these steps: ### Step 1: Rewrite the angle We start by rewriting \( \frac{7\pi}{5} \) in a more manageable form. We can express it as: \[ \frac{7\pi}{5} = \pi + \frac{2\pi}{5} \] ### Step 2: Use cosine properties Using the property of cosine, we know that: \[ \cos(\pi + \theta) = -\cos(\theta) \] Thus, we can rewrite: \[ \cos\left(\frac{7\pi}{5}\right) = \cos\left(\pi + \frac{2\pi}{5}\right) = -\cos\left(\frac{2\pi}{5}\right) \] ### Step 3: Substitute into the inverse cosine Now we substitute this back into our original expression: \[ \cos^{-1}(\cos(\frac{7\pi}{5})) = \cos^{-1}(-\cos(\frac{2\pi}{5})) \] ### Step 4: Use the property of inverse cosine We can use the property of inverse cosine that states: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] Applying this property, we have: \[ \cos^{-1}(-\cos(\frac{2\pi}{5})) = \pi - \cos^{-1}(\cos(\frac{2\pi}{5})) \] ### Step 5: Simplify the expression Since \( \cos^{-1}(\cos(x)) = x \) for \( x \) in the range of \( [0, \pi] \), we can simplify: \[ \pi - \cos^{-1}(\cos(\frac{2\pi}{5})) = \pi - \frac{2\pi}{5} \] ### Step 6: Calculate the final value Now we perform the subtraction: \[ \pi - \frac{2\pi}{5} = \frac{5\pi}{5} - \frac{2\pi}{5} = \frac{3\pi}{5} \] ### Conclusion Thus, the final answer is: \[ \cos^{-1}(\cos(\frac{7\pi}{5})) = \frac{3\pi}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)("tan"(7pi)/(6))+ cos^(-1)("cos"(7pi)/(6))

cos^(-1)((cos(46 pi))/(7))

The value of cos[(1)/(2)cos^(-1)(cos(-(14 pi)/(5)))] is/are a.cos (-(7 pi)/(5)) b.sin((pi)/(10))ccos((2 pi)/(5))d.-cos((3 pi)/(5))

cos^(-1)(cos((7 pi)/(6))) is equal to

cos^(-1)((cos(7 pi))/(5)) is equal to

The value of cos[(1)/(2)cos^(-1)cos((14 pi)/(5))]is(a)cos((2 pi)/(5))(b)cos(-(7 pi)/(5))(c)sin((pi)/(10))(d)-cos((3 pi)/(5))

The value of sin^(-1)(sin""(2pi)/(3))+cos^(-1)(cos""(7pi)/(6)) is

Principal value of cos^(-1)[cos((7pi)/(6))] is

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 1: (CONCEPT BUILDER)
  1. If x epsilon(7pi,8pi), then "tan"^(-1)sqrt((1-"cos" x)/(1+"cos" x))=

    Text Solution

    |

  2. If "tan"^(-1)(-x)+"cos"^(-1)((-1)/(2))=pi/2, then the value of x is eq...

    Text Solution

    |

  3. "cos"^(-1)("cos"((7pi)/(5)))=

    Text Solution

    |

  4. sin[cot^(-1)(cot\ (17pi)/3)]

    Text Solution

    |

  5. The principal values of cost^(-1)(-sin(7pi)/(6)) is

    Text Solution

    |

  6. The value of underset(x to pi/2)limsqrt(("tan"x-"sin"("tan"^(-1)("tan"...

    Text Solution

    |

  7. Find the value of cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

    Text Solution

    |

  8. If cot^(-1)n/pi>pi/6,n in N , then the maximum value of n is 6 (b) ...

    Text Solution

    |

  9. The value of cos (1/2 cos^(-1) . 1/8) is equal to

    Text Solution

    |

  10. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  11. Given that "sin"^(-1)("sin""(3pi)/(4))=(2pi)/(k),then k=

    Text Solution

    |

  12. If underset(i=1)overset(n)sum cos^(-1) alpha(i)=0," then "underset(i=1...

    Text Solution

    |

  13. Complete solution set of tan^2(sin^(-1)x)>1 is (-1,-1/(sqrt(2)))uu(1/(...

    Text Solution

    |

  14. -(2pi)/(5) is the principal value of

    Text Solution

    |

  15. Find the value of sin [ arc cos (- 1/2)]

    Text Solution

    |

  16. The positive integral solution of "tan"^(-1)x+"cos"^(-1)(y)/(sqrt(1+...

    Text Solution

    |

  17. If "tan"^(-1)(x+1)+cot^(-1)(x-1)="sin"^(-1) (4/5) + cos^(-1) (3/5), th...

    Text Solution

    |

  18. If sin(cot^(-1)(x+1))=costan^(-1)x, then x=

    Text Solution

    |

  19. sin(sin^(-1)((1)/(3))+sec^(-1)(3))+cos(tan^(-1)(1)/(2))+tan^(-1)2)=

    Text Solution

    |

  20. Indicate the relation which can hold in their respective domain for in...

    Text Solution

    |