Home
Class 12
MATHS
"cos"^(-1)("cos"((7pi)/(5)))=...

`"cos"^(-1)("cos"((7pi)/(5)))=`

A

`(3pi)/(5)`

B

`(2pi)/(5)`

C

`(-7pi)/(5)`

D

`(7pi)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos^{-1}(\cos(\frac{7\pi}{5})) \), we can follow these steps: ### Step 1: Rewrite the angle We start by rewriting \( \frac{7\pi}{5} \) in a more manageable form. We can express it as: \[ \frac{7\pi}{5} = \pi + \frac{2\pi}{5} \] ### Step 2: Use cosine properties Using the property of cosine, we know that: \[ \cos(\pi + \theta) = -\cos(\theta) \] Thus, we can rewrite: \[ \cos\left(\frac{7\pi}{5}\right) = \cos\left(\pi + \frac{2\pi}{5}\right) = -\cos\left(\frac{2\pi}{5}\right) \] ### Step 3: Substitute into the inverse cosine Now we substitute this back into our original expression: \[ \cos^{-1}(\cos(\frac{7\pi}{5})) = \cos^{-1}(-\cos(\frac{2\pi}{5})) \] ### Step 4: Use the property of inverse cosine We can use the property of inverse cosine that states: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] Applying this property, we have: \[ \cos^{-1}(-\cos(\frac{2\pi}{5})) = \pi - \cos^{-1}(\cos(\frac{2\pi}{5})) \] ### Step 5: Simplify the expression Since \( \cos^{-1}(\cos(x)) = x \) for \( x \) in the range of \( [0, \pi] \), we can simplify: \[ \pi - \cos^{-1}(\cos(\frac{2\pi}{5})) = \pi - \frac{2\pi}{5} \] ### Step 6: Calculate the final value Now we perform the subtraction: \[ \pi - \frac{2\pi}{5} = \frac{5\pi}{5} - \frac{2\pi}{5} = \frac{3\pi}{5} \] ### Conclusion Thus, the final answer is: \[ \cos^{-1}(\cos(\frac{7\pi}{5})) = \frac{3\pi}{5} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)("tan"(7pi)/(6))+ cos^(-1)("cos"(7pi)/(6))

cos^(-1)((cos(46 pi))/(7))

Knowledge Check

  • cos^(-1)(cos"(7pi)/6)=

    A
    `(7pi)/6`
    B
    `(5pi)/6`
    C
    `pi/3`
    D
    `pi/6`
  • The value of "cos"(2pi)/(7)+"cos"(4pi)/(7)+"cos"(6pi)/(7)+"cos"(7pi)/(7) is

    A
    1
    B
    `-1`
    C
    `1//2`
    D
    `-3//2`
  • Similar Questions

    Explore conceptually related problems

    The value of cos[(1)/(2)cos^(-1)(cos(-(14 pi)/(5)))] is/are a.cos (-(7 pi)/(5)) b.sin((pi)/(10))ccos((2 pi)/(5))d.-cos((3 pi)/(5))

    cos^(-1)(cos((7 pi)/(6))) is equal to

    cos^(-1)((cos(7 pi))/(5)) is equal to

    The value of cos[(1)/(2)cos^(-1)cos((14 pi)/(5))]is(a)cos((2 pi)/(5))(b)cos(-(7 pi)/(5))(c)sin((pi)/(10))(d)-cos((3 pi)/(5))

    The value of sin^(-1)(sin""(2pi)/(3))+cos^(-1)(cos""(7pi)/(6)) is

    Principal value of cos^(-1)[cos((7pi)/(6))] is