Home
Class 12
MATHS
The value of the limit lim ( n to oo) ...

The value of the limit
`lim _( n to oo) [(1)/(na) + (1)/( na +1) + (1)/( na +2) +.....+ (1)/( nb) ]` is

A

`b/a`

B

`log "b/a`

C

`e ^(b\\a)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-1 CONCEPT BUILDER|59 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

The value of the limit lim_(x rarr oo)((x-1)/(x+3))^(x+2) is

The value of the limit prod_(n=2)^(oo)(1-(1)/(n^(2))) is

Knowledge Check

  • The value of the limit lim_(x to -oo) (sqrt(4x^(2) - x )+2x) is

    A
    `-oo`
    B
    `-(1)/(4)`
    C
    0
    D
    `(1)/(4)`
  • The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is

    A
    `1`
    B
    `1//3`
    C
    `1//2`
    D
    `3//2`
  • The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

    A
    `1/4`
    B
    `1/3`
    C
    `1/2`
    D
    `1`
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following limit: lim_(nto oo)[(n!)/(n^(n))]^(1//n)

    The value of lim_ (n rarr oo) (n + 1) / (n ^ (2)) - :( 1) / (n)

    Find the value of the limit given below lim_(n to 1/2)(4n^(2)-1)/(2n-1)

    lim_ (n rarr oo) (n) / ((n!) ^ ((1) / (n)))

    The value of lim_ (n rarr oo) [(1) / (n) + (e ^ ((1) / (n))) / (n) + (e ^ ((2) / (n))) / (n) + .... + (e ^ ((n-1) / (n))) / (n)] is: