Home
Class 12
CHEMISTRY
The rate coefficient (k) for a particula...

The rate coefficient (k) for a particular reactions is `1.3 xx 10^(-4)M^(-1)s^(-1)` at `100^(@)C`, and `1.3 xx 10^(-3)M^(-1)s^(-1)` at `150^(@)C`. What is the energy of activation (`E_(a)`) (in kJ) for this reaction? (R=molar gas constant = `8.314 JK^(-1) mol^(-1)`)

A

16

B

60

C

99

D

132

Text Solution

AI Generated Solution

The correct Answer is:
To find the energy of activation (Ea) for the given reaction, we can use the Arrhenius equation in its logarithmic form: \[ \log \left( \frac{k_2}{k_1} \right) = \frac{E_a}{2.303 R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \] Where: - \( k_1 \) and \( k_2 \) are the rate constants at temperatures \( T_1 \) and \( T_2 \) respectively. - \( R \) is the universal gas constant, which is \( 8.314 \, \text{J K}^{-1} \text{mol}^{-1} \). - \( T_1 \) and \( T_2 \) are the absolute temperatures in Kelvin. ### Step 1: Convert temperatures from Celsius to Kelvin - \( T_1 = 100^\circ C = 100 + 273 = 373 \, K \) - \( T_2 = 150^\circ C = 150 + 273 = 423 \, K \) ### Step 2: Identify the rate constants - \( k_1 = 1.3 \times 10^{-4} \, M^{-1} s^{-1} \) - \( k_2 = 1.3 \times 10^{-3} \, M^{-1} s^{-1} \) ### Step 3: Substitute values into the Arrhenius equation We can now substitute the values into the logarithmic form of the Arrhenius equation: \[ \log \left( \frac{1.3 \times 10^{-3}}{1.3 \times 10^{-4}} \right) = \frac{E_a}{2.303 \times 8.314} \left( \frac{1}{373} - \frac{1}{423} \right) \] ### Step 4: Simplify the left side The left side simplifies as follows: \[ \log \left( \frac{1.3 \times 10^{-3}}{1.3 \times 10^{-4}} \right) = \log \left( 10 \right) = 1 \] ### Step 5: Calculate the right side Now we need to calculate the right side. First, calculate \( \frac{1}{373} - \frac{1}{423} \): \[ \frac{1}{373} \approx 0.002684 \, K^{-1} \] \[ \frac{1}{423} \approx 0.002365 \, K^{-1} \] \[ \frac{1}{373} - \frac{1}{423} \approx 0.002684 - 0.002365 = 0.000319 \, K^{-1} \] ### Step 6: Substitute and solve for \( E_a \) Now substitute this value back into the equation: \[ 1 = \frac{E_a}{2.303 \times 8.314} \times 0.000319 \] Now, calculate \( 2.303 \times 8.314 \): \[ 2.303 \times 8.314 \approx 19.1 \] Now we can solve for \( E_a \): \[ 1 = \frac{E_a \times 0.000319}{19.1} \] Rearranging gives: \[ E_a = \frac{19.1}{0.000319} \] Calculating \( E_a \): \[ E_a \approx 59700 \, J/mol = 59.7 \, kJ/mol \] ### Final Answer Thus, the energy of activation \( E_a \) for the reaction is approximately: \[ E_a \approx 60 \, kJ/mol \]

To find the energy of activation (Ea) for the given reaction, we can use the Arrhenius equation in its logarithmic form: \[ \log \left( \frac{k_2}{k_1} \right) = \frac{E_a}{2.303 R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \] Where: - \( k_1 \) and \( k_2 \) are the rate constants at temperatures \( T_1 \) and \( T_2 \) respectively. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHEMICAL KINETICS

    DISHA PUBLICATION|Exercise EXERCISE 1 : CONCEPT BUILDER (TOPICWISE) (TOPIC 1: Rate of Reaction, Rate Laws and Rate Constant)|11 Videos
  • CHEMICAL KINETICS

    DISHA PUBLICATION|Exercise EXERCISE 1 : CONCEPT BUILDER (TOPICWISE) (TOPIC 2: Order of Reaction and Half Life Period)|32 Videos
  • CHEMICAL BONDING AND MOLECULAR STRUCTURE

    DISHA PUBLICATION|Exercise EXERCISE-2: CONCEPT APPLICATOR|30 Videos
  • CHEMISTRY IN EVERDAY LIFE

    DISHA PUBLICATION|Exercise Exercise|88 Videos

Similar Questions

Explore conceptually related problems

The rate constant of a reaction is 1.2 xx10^(-3) s^(-1) at 30^@C and 2.1xx10^(-3)s^(-1) at 40^@C . Calculate the energy of activation of the reaction.

The rate constant of a reaction is 1.2xx10^(-3)sec^(-1)" at "30^(@)C" and "2.1xx10^(-3)sec^(-1)" at" 40^(@)C . Calculate the energy of activation of the reaction.

Knowledge Check

  • The rate constant for a reaction is 1.5 xx 10^(-7) at 50^(@) C and 4.5 xx 10^(7)s^(-1) at 100^(@) C . What is the value of activation energy?

    A
    `2.2 xx 10^(3) J mol^(-1)`
    B
    `2300 J mol^(-1)`
    C
    `2.2 xx 10^(4) J mol^(-1)`
    D
    `220 J mol^(-1)`
  • The rate constant of a reaction is 1.5xx10^7 s^(-1) at 50^@C and 4.5xx10^(7)s^(-1) at 100^@C . What is the value of activation energy ?

    A
    `2.2xx10^3" J mol"^(-1)`
    B
    `2300 "J mol"^(-1)`
    C
    `2.2xx10^4" J mol"^(-1)`
    D
    `220 " J mol"^(-1)`
  • The rate constant for the decomposition of a certain substance is 2.80 xx 10^(-1)M^(-1)s^(-1) at 30^(@)C and 1.38 xx 10^(-2)M^(-1) s^(-1) at 50^(@)C . The Arrhenius parameters (A) of the reaction is: ( R=8.314 xx 10^(-3) kJ mol^(-1) K^(-1) ).

    A
    `8.68 xx 10^(8) M^(-1) s^(-1)`
    B
    `2.16 xx 10^(7) M^(-1) s^(-1)`
    C
    `4.34 xx 10^(8) M^(-1) s^(-1)`
    D
    `3.34 xx 10^(8) M^(-1) s^(-1)`
  • Similar Questions

    Explore conceptually related problems

    The rate constant of a reaction is 1.5 xx 10^(7)s^(-1) at 50^(@) C and 4.5 xx 10^(7)s^(-1) at 100^(@) C. Calculate the value of activation energy for the reaction (R=8.314 J K^(-1)mol^(-1))

    The rate constant of a reaction is 1.5 xx 10^(7)s^(-1) at 50^(@)C and 4.5 xx 10^(7) s^(-1) at 100^(@)C . Evaluate the Arrhenius parameters A and E_(a) .

    If the rate constant of a reaction is 3.0 mol L^(-1)s^(-1) at 700 K and 30 mol L^(-1)s^(-1) at 800 K, what is the energy of activation for this reaction? R = 8.314 JK^(-1) mol^(-1)

    For a decomposition, the values of rate constants at two different temperature are given below: k_(1) = 2.15 xx 10^(-8)L mol^(-1)s^(-1) at 650 K k_(2) = 2.39 xx 10^(-7) L mol^(-1)s^(-1) at 700 K Calculate the value of activation energy for the reaction (R= 8.314 JK^(-1) mol^(-1))

    The rate constant of a reaction is 1.5 xx 10^7 s^(-1) at50^@C and 4.5 xx 10^(7) s^(-1) at 100^@C . Evaluate the Arrhenius parameters A and E_a .