Home
Class 12
PHYSICS
The intensity ratio of the two interferi...

The intensity ratio of the two interfering beams of light is m. What is the value of `I_("max")-I_("min") // I_("max")+I_("min")`?

A

`2sqrt(m)`

B

`(2sqrt(m))/(1+m)`

C

`(2)/(1+m)`

D

`(1+m)/(2sqrt(m))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}\) given the intensity ratio of two interfering beams of light as \(m\). ### Step-by-Step Solution: 1. **Define Intensities**: Let the intensities of the two beams be \(I_1\) and \(I_2\). Given the intensity ratio \(m\), we can express this as: \[ I_1 = m I_2 \] 2. **Calculate \(I_{\text{max}}\)**: The maximum intensity \(I_{\text{max}}\) for two interfering beams can be calculated using the formula: \[ I_{\text{max}} = I_1 + I_2 + 2\sqrt{I_1 I_2} \] Substituting \(I_1 = m I_2\): \[ I_{\text{max}} = m I_2 + I_2 + 2\sqrt{m I_2 \cdot I_2} \] Simplifying this: \[ I_{\text{max}} = (m + 1) I_2 + 2\sqrt{m} I_2 = (m + 1 + 2\sqrt{m}) I_2 \] 3. **Calculate \(I_{\text{min}}\)**: The minimum intensity \(I_{\text{min}}\) is given by: \[ I_{\text{min}} = I_1 + I_2 - 2\sqrt{I_1 I_2} \] Again substituting \(I_1 = m I_2\): \[ I_{\text{min}} = m I_2 + I_2 - 2\sqrt{m I_2 \cdot I_2} \] Simplifying this: \[ I_{\text{min}} = (m + 1) I_2 - 2\sqrt{m} I_2 = (m + 1 - 2\sqrt{m}) I_2 \] 4. **Calculate \(I_{\text{max}} - I_{\text{min}}\)**: Now, we find \(I_{\text{max}} - I_{\text{min}}\): \[ I_{\text{max}} - I_{\text{min}} = [(m + 1 + 2\sqrt{m}) I_2] - [(m + 1 - 2\sqrt{m}) I_2] \] This simplifies to: \[ I_{\text{max}} - I_{\text{min}} = (4\sqrt{m}) I_2 \] 5. **Calculate \(I_{\text{max}} + I_{\text{min}}\)**: Next, we find \(I_{\text{max}} + I_{\text{min}}\): \[ I_{\text{max}} + I_{\text{min}} = [(m + 1 + 2\sqrt{m}) I_2] + [(m + 1 - 2\sqrt{m}) I_2] \] This simplifies to: \[ I_{\text{max}} + I_{\text{min}} = (2(m + 1)) I_2 \] 6. **Calculate the Ratio**: Now we can find the desired ratio: \[ \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{(4\sqrt{m}) I_2}{(2(m + 1)) I_2} \] Canceling \(I_2\) from numerator and denominator: \[ = \frac{4\sqrt{m}}{2(m + 1)} = \frac{2\sqrt{m}}{m + 1} \] ### Final Answer: \[ \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{2\sqrt{m}}{m + 1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTERFERENCE AND DIFFRACTION

    RESNICK AND HALLIDAY|Exercise PRACTICE QUESTIONS (More than One Correct Choice Type)|23 Videos
  • INTERFERENCE AND DIFFRACTION

    RESNICK AND HALLIDAY|Exercise PRACTICE QUESTIONS (Linked Comprehension)|21 Videos
  • INTERFERENCE AND DIFFRACTION

    RESNICK AND HALLIDAY|Exercise PROBLEMS|61 Videos
  • HYDROGEN ATOM

    RESNICK AND HALLIDAY|Exercise PRACTICE QUESTIONS(Integer Type)|6 Videos
  • MAGNETIC FIELDS DUE TO CURRENTS

    RESNICK AND HALLIDAY|Exercise Practice Question (Integer Type)|4 Videos

Similar Questions

Explore conceptually related problems

Two coherent sources of light of intensity ratio beta produce interference pattern. Prove that in the interferencepattern (I_(max) - I_(min))/(I_(max) + (I_(min))) = (2 sqrt beta)/(1 + beta) where I_(max) and I_(min) are maximum and mininum intensities in the resultant wave.

Let I_1 and I_2 be intensities of two sources such that (I_1)/(I_2) = k . Find value of (I_("max") - I_("min"))/(I_("max") + I_("min")) .

Knowledge Check

  • Two coherent sources of intensity ratio alpha interfere. The value of (I_("max") - I_("min"))/(I_("max") + I_("min")) is ,

    A
    `2sqrt((alpha)/(1+alpha))`
    B
    `(2sqrt(alpha))/(1+alpha)`
    C
    `(1+alpha)/(2sqrt(alpha))`
    D
    `(1-alpha)/(1+alpha)`
  • The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference pattern, the ratio (I_("max" - I_("min")))/(I_("max") + I_("min")) will be :

    A
    `(sqrt(n))/((n+1)^(2))`
    B
    `(2sqrt(n))/((n+1)^(2))`
    C
    `(sqrt(n))/(n+1)`
    D
    `(2sqrt(n))/(n+1)`
  • The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference pattern, the ratio (I_("max" - I_("min"))/(I_("max") + I_("min"))) will be :

    A
    `(sqrt(n))/((n+1)^(2))`
    B
    `(2sqrt(n))/((n+1)^(2))`
    C
    `(sqrt(n))/(n+1)`
    D
    `(2sqrt(n))/(n+1)`
  • Similar Questions

    Explore conceptually related problems

    Two coherent sources of intensity ratio beta interfere. Then the value of (I_(max)-I_(min))(I_(max)+I_(min)) is

    Two coherent sources of light of intensity ratio beta interfere. Prove that the interference pattern, (I_(max)-I_(min))/(I_(max)+I_(min))=(2sqrtbeta)/(1+beta) .

    Two coherent sources of intensity ratio beta^2 interfere. Then, the value of (I_(max)- I_(min))//(I_(max)+I_(min)) is

    Two coherent sources of intensity ratio alpha interface . In interference pattern (I_("max") - I_("min"))/(I_("max") + I_("min")) =

    The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference patten, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be