Home
Class 12
MATHS
(i) underset(xrarr0)"lim"(x tan 4x)/(1-c...

(i) `underset(xrarr0)"lim"(x tan 4x)/(1-cos 4x) `
(ii) `underset(yrarr0)"lim"((x+y)sec(x+y)-x sec x)/(y )`

A

`sec x(x tan x+1)`

B

`x tan x+sec x`

C

`x sec x+tan x`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 3)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 4)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 1)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

(i) lim_(x to 0) (x tan 4x)/(1-cos 4x) (ii) lim_(y to 0) ((x+y)sec(x+y)-x sec x)/(y )

Evaluate lim_(xrarr0)(xtan4x)/(1-cos4x).

Knowledge Check

  • If l = underset( x rarr 0) ("Lim")( x ( 1+ a cos x ) - bsin x ) /( x^(3))= underset( x rarr 0 ) ("Lim") ( 1+a cos x ) /( x^(2))- underset( x rarr 0 ) ("lim")( b sin x )/( x^(3)) , where l in R , then

    A
    ` ( a, b ) = ( -1,0)`
    B
    a & b are nay real numbers
    C
    l = 0
    D
    `l = ( 1)/( 2)`
  • underset( x rarroo ) ("lim") sec^(-1) ((x)/( x+1)) =

    A
    0
    B
    `pi`
    C
    `(pi)/(2)`
    D
    does not exist
  • lim_(xrarr0) (xtan2x -2x tan x)/((1-cos 2x)^2) , is

    A
    2
    B
    -2
    C
    `1//2`
    D
    `-1//2`
  • Similar Questions

    Explore conceptually related problems

    lim_ (x rarr0) ((x + y) sec (x + y) -y sec y) / (x)

    lim_(xrarr0) (tan 4x)/(tan 2x)

    Find the limits: (a) underset(x to 0)lim (arc cos (1-x))/sqrtx (b) underset(x to pi//4)lim (ln tan x)/(1-cot x) (c ) underset(x to 0) lim(1)/(sin x) ln (1+a sin x)

    underset( x rarr 0 ) ( "lim")( x tan 2x - 2x ta n x )/(( 1- cos 2x)^(2)) is

    underset(x to 0)(lim) (1-cos x)/(x) is :