Home
Class 12
MATHS
If y=f((2x-1)/(x^2+1)) and f^(prime)(x)=...

If `y=f((2x-1)/(x^2+1))` and `f^(prime)(x)=sinx^2` , find `(dy)/(dx)` .

A

`sin ((2x+1)/(x^2+1))^(2) [(2+2x-2x^(2))/(x^(2)+1)]`

B

`sin ((2x-1)/(x^(2)-1))^(2) [(2+2x-2x^(2))/(x^(2)+1)]`

C

`sin ((2x-1)/(x^(2)+1))^(2) [(2+2x-2x^(2))/(x^(2)+1)]`

D

`sin ((2x+1)/(x^(2)-1))^(2) [(2+2x-2x^(2))/(x^(2)+1)]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 3)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If y=f((2x-1)/(x^(2)+1)) and f'(x)=sin x^(2), find (dy)/(dx)

If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2) , then (dy)/(dx) is equal to

If y=f((2x-1)/(x^(2)+1)) and f^(')(x)=sinx^(2) then dy//dx at x=0 is

If y = f((2x-1)/(x^(2)+1))and f'(x) = sin^(2) x, " then " (dy)/(dx) = ……. .

If y=f(x^(2)) and f'(x) =sin x^(2)." Find "(dy)/(dx)

y=f((2x-1)/(x^(2)-1)) and f'(x)=sin x then (dy)/(dx)

f(x)=3/(2-x),xne2 find dy/dx

y=(1+x^2)/(1-x^2) , find dy/dx

If y=f((2x+3)/(3-2x)) and f(x)=sin(logx) , then (dy)/(dx)=