Home
Class 12
MATHS
If y=f((2x-1)/(x^2+1)) and f^(prime)(x)=...

If `y=f((2x-1)/(x^2+1))` and `f^(prime)(x)=sinx^2` , find `(dy)/(dx)` .

A

`sin ((2x+1)/(x^2+1))^(2) [(2+2x-2x^(2))/(x^(2)+1)]`

B

`sin ((2x-1)/(x^(2)-1))^(2) [(2+2x-2x^(2))/(x^(2)+1)]`

C

`sin ((2x-1)/(x^(2)+1))^(2) [(2+2x-2x^(2))/(x^(2)+1)]`

D

`sin ((2x+1)/(x^(2)-1))^(2) [(2+2x-2x^(2))/(x^(2)+1)]`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 3)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If y=f((2x-1)/(x^(2)+1)) and f'(x)=sin x^(2), find (dy)/(dx)

If y=f((2x-1)/(x^(2)+1)) and f^(')(x)=sinx^(2) then dy//dx at x=0 is

Knowledge Check

  • If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2) , then (dy)/(dx) is equal to

    A
    `sin((2x-1)/(x^(2)+1)^(2).((2+2x+2x^(2))/((x^(2)+1)^(2))))`
    B
    `sin((2x-1)/(x^(2)+1)^(2).((2+2x-2x^(2))/((x^(2)+1)^(2))))`
    C
    `sin((2x-1)/(x^(2)+1)^(2).((2+2x-x^(2))/((x^(2)+1)^(2))))`
    D
    `sin(x^(2)).((2+2x-2x^(2))/((x^(2)+1)^(2)))`
  • If Y=f ((2x -1)/(x^2 +1)) and f'(x) = sin x^2 , then (dy)/(dx) at x=0 equals

    A
    `1/2 sin 1 `
    B
    ` sin 1`
    C
    `2 sin 1`
    D
    None of these
  • If y=f((2x+3)/(3-2x)) and f(x)=sin(logx) , then (dy)/(dx)=

    A
    `12/(9-4x^2)cos{log""(2x+3)/(3-2x))}`
    B
    `12/(4x^2-9)cos{log""(2x+3)/(3-2x))}`
    C
    `12/(9-4x^2)cos{log""(3-2x)/(2x+3))}`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If y = f((2x-1)/(x^(2)+1))and f'(x) = sin^(2) x, " then " (dy)/(dx) = ……. .

    If y=f(x^(2)) and f'(x) =sin x^(2)." Find "(dy)/(dx)

    y=f((2x-1)/(x^(2)-1)) and f'(x)=sin x then (dy)/(dx)

    f(x)=3/(2-x),xne2 find dy/dx

    y=(1+x^2)/(1-x^2) , find dy/dx