Home
Class 12
MATHS
The value of the integral int(0) ^(pi) c...

The value of the integral `int_(0) ^(pi) cos 2 x log _(e) sin x dx` is

A

0

B

`-pi/2`

C

`pi/2`

D

`-pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \cos(2x) \log(\sin x) \, dx \), we will use integration by parts. ### Step 1: Set up integration by parts We will let: - \( u = \log(\sin x) \) (which we will differentiate) - \( dv = \cos(2x) \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{\sin x} \cos x \, dx \) (using the derivative of \( \log(\sin x) \)) - \( v = \frac{1}{2} \sin(2x) \) (integrating \( \cos(2x) \)) ### Step 3: Apply integration by parts formula Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = \left[ \log(\sin x) \cdot \frac{1}{2} \sin(2x) \right]_{0}^{\pi} - \int_{0}^{\pi} \frac{1}{2} \sin(2x) \cdot \frac{\cos x}{\sin x} \, dx \] ### Step 4: Evaluate the boundary term Now we evaluate the boundary term: \[ \left[ \log(\sin x) \cdot \frac{1}{2} \sin(2x) \right]_{0}^{\pi} \] At \( x = 0 \) and \( x = \pi \), \( \sin(2x) = 0 \), hence the boundary term evaluates to: \[ 0 - 0 = 0 \] ### Step 5: Simplify the integral Now we simplify the remaining integral: \[ I = - \frac{1}{2} \int_{0}^{\pi} \sin(2x) \cot(x) \, dx \] Since \( \cot(x) = \frac{\cos x}{\sin x} \), we can rewrite the integral: \[ I = - \frac{1}{2} \int_{0}^{\pi} \frac{\sin(2x) \cos x}{\sin x} \, dx \] ### Step 6: Use the identity for \( \sin(2x) \) Using the identity \( \sin(2x) = 2 \sin x \cos x \): \[ I = - \frac{1}{2} \int_{0}^{\pi} 2 \cos^2 x \, dx = - \int_{0}^{\pi} \cos^2 x \, dx \] ### Step 7: Evaluate the integral of \( \cos^2 x \) Using the identity \( \cos^2 x = \frac{1 + \cos(2x)}{2} \): \[ I = - \int_{0}^{\pi} \frac{1 + \cos(2x)}{2} \, dx = -\frac{1}{2} \left[ x + \frac{1}{2} \sin(2x) \right]_{0}^{\pi} \] Evaluating this gives: \[ = -\frac{1}{2} \left[ \pi + 0 - (0 + 0) \right] = -\frac{\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{-\frac{\pi}{2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of integral int_(0)^( pi)xf(sin x)dx=

Knowledge Check

  • The value of the integral int_(0)^(pi)x log sin x dx is

    A
    `(pi)/(2) log 2`
    B
    `(pi^(2))/(2) log 2`
    C
    `-(pi^(2))/(2)` log 2`
    D
    none of these
  • The value of the integral int_(0)^(pi//2) sin 2x log tan x dx equals

    A
    0
    B
    `(pi)/(8) log 2`
    C
    `(pi)/(4) log 2`
    D
    `(pi)/(6) log 2`
  • The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

    A
    ` (3)/(8) pi `
    B
    0
    C
    ` (3 )/(16) pi `
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

    The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

    The value of the integral int _(0)^(pi//2) sin ^(5) x dx is

    The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

    The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is