Home
Class 12
MATHS
The value of the integral int(0) ^(pi) c...

The value of the integral `int_(0) ^(pi) cos 2 x log _(e) sin x dx` is

A

0

B

`-pi/2`

C

`pi/2`

D

`-pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \cos(2x) \log(\sin x) \, dx \), we will use integration by parts. ### Step 1: Set up integration by parts We will let: - \( u = \log(\sin x) \) (which we will differentiate) - \( dv = \cos(2x) \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{\sin x} \cos x \, dx \) (using the derivative of \( \log(\sin x) \)) - \( v = \frac{1}{2} \sin(2x) \) (integrating \( \cos(2x) \)) ### Step 3: Apply integration by parts formula Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = \left[ \log(\sin x) \cdot \frac{1}{2} \sin(2x) \right]_{0}^{\pi} - \int_{0}^{\pi} \frac{1}{2} \sin(2x) \cdot \frac{\cos x}{\sin x} \, dx \] ### Step 4: Evaluate the boundary term Now we evaluate the boundary term: \[ \left[ \log(\sin x) \cdot \frac{1}{2} \sin(2x) \right]_{0}^{\pi} \] At \( x = 0 \) and \( x = \pi \), \( \sin(2x) = 0 \), hence the boundary term evaluates to: \[ 0 - 0 = 0 \] ### Step 5: Simplify the integral Now we simplify the remaining integral: \[ I = - \frac{1}{2} \int_{0}^{\pi} \sin(2x) \cot(x) \, dx \] Since \( \cot(x) = \frac{\cos x}{\sin x} \), we can rewrite the integral: \[ I = - \frac{1}{2} \int_{0}^{\pi} \frac{\sin(2x) \cos x}{\sin x} \, dx \] ### Step 6: Use the identity for \( \sin(2x) \) Using the identity \( \sin(2x) = 2 \sin x \cos x \): \[ I = - \frac{1}{2} \int_{0}^{\pi} 2 \cos^2 x \, dx = - \int_{0}^{\pi} \cos^2 x \, dx \] ### Step 7: Evaluate the integral of \( \cos^2 x \) Using the identity \( \cos^2 x = \frac{1 + \cos(2x)}{2} \): \[ I = - \int_{0}^{\pi} \frac{1 + \cos(2x)}{2} \, dx = -\frac{1}{2} \left[ x + \frac{1}{2} \sin(2x) \right]_{0}^{\pi} \] Evaluating this gives: \[ = -\frac{1}{2} \left[ \pi + 0 - (0 + 0) \right] = -\frac{\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{-\frac{\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(0)^(pi)x log sin x dx is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int _(0)^(pi//2) sin ^(5) x dx is

The value of integral int_(0)^( pi)xf(sin x)dx=

The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

DISHA PUBLICATION-INTEGRALS -EXERCISE-1 CONCEPT BUILDER
  1. overset(pi//2)underset(-pi//2)int (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  2. If underset(0)overset(1)int e^(x^(2))(x-alpha)dx=0 then

    Text Solution

    |

  3. The value of the integral int(0) ^(pi) cos 2 x log (e) sin x dx is

    Text Solution

    |

  4. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  5. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  6. The value of int(1)^(e^(37))(pi sin(pi log x))/(x)dx is ………….

    Text Solution

    |

  7. Evaluate int (0)^(pi)(x)/(1+ cos^(2)x)dx.

    Text Solution

    |

  8. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  9. The value of int(0) ^(1) (dx )/( e ^(x) + e) is equal to

    Text Solution

    |

  10. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  11. The value of int(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

    Text Solution

    |

  12. int ( log 1//2 ) ^( log 2) sin { (e ^(x) -1)/( e ^(x ) +1 )}dx equals

    Text Solution

    |

  13. Let f (x) = x^(2) -2. If int (3) ^(6) f (x)dx =3f (c ) for some c in (...

    Text Solution

    |

  14. int0^pix(sin^4xcos^4x)dx

    Text Solution

    |

  15. If I(n) = int (0)^(pi//4) tan^(n) theta " " d theta, "then "I(8)+I(6)=

    Text Solution

    |

  16. In=int0^(pi//4) tan^n x\ dx, then lim(ntooo) n\ [In + I(n+2)] is equal...

    Text Solution

    |

  17. What is int tan^(2) x sec^(4) x dx equal to ?

    Text Solution

    |

  18. int(0)^(pi//2) sin^(2) x cos ^(3) x dx

    Text Solution

    |

  19. If int0^ooe^(-ax)dx=1/a, then int0^oo(x^n)e^(-ax)dx is

    Text Solution

    |

  20. If I(m,n)= overset(1)underset(0)int x^(m) (ln x)^(n)dx then I(m,n) i...

    Text Solution

    |