Home
Class 12
MATHS
If y = 2^(x) " then " (dy)/(dx) =?...

If `y = 2^(x) " then " (dy)/(dx) =`?

A

`x(2^(x -1))`

B

`(2^(x))/((log 2))`

C

`2^(x) (log 2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = 2^x \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ y = 2^x \] Taking the natural logarithm on both sides gives us: \[ \log y = \log(2^x) \] ### Step 2: Use the properties of logarithms Using the property of logarithms that states \( \log(a^b) = b \log a \), we can rewrite the right-hand side: \[ \log y = x \log 2 \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \( x \). Remember that when differentiating \( \log y \), we need to use implicit differentiation: \[ \frac{d}{dx}(\log y) = \frac{1}{y} \frac{dy}{dx} \] On the right side, since \( \log 2 \) is a constant, the differentiation gives: \[ \frac{d}{dx}(x \log 2) = \log 2 \] ### Step 4: Set the derivatives equal Now we can set the derivatives equal to each other: \[ \frac{1}{y} \frac{dy}{dx} = \log 2 \] ### Step 5: Solve for \( \frac{dy}{dx} \) To isolate \( \frac{dy}{dx} \), we multiply both sides by \( y \): \[ \frac{dy}{dx} = y \log 2 \] ### Step 6: Substitute back for \( y \) Since we know that \( y = 2^x \), we can substitute back: \[ \frac{dy}{dx} = 2^x \log 2 \] Thus, the final result is: \[ \frac{dy}{dx} = 2^x \log 2 \] ---

To find the derivative of the function \( y = 2^x \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ y = 2^x \] Taking the natural logarithm on both sides gives us: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If x^(y) = 2^(x-y) , then (dy)/(dx) =?

If y^(x)=2^(x), then (dy)/(dx) is

Knowledge Check

  • If y= x^(x^(2x) ) ,then (dy)/(dx) =

    A
    ` x^(x^(2x)) x^(2x) log x( 2+ 2log x +( 1)/(xlog x ))`
    B
    ` x^(x^(2x)) x^(2x) log x( 2+ log x +( 1)/(xlog x ))`
    C
    ` x^(x^(2x)) x^(2x) ( 2+ 2log x +( 1)/(xlog x ))`
    D
    ` x^(x^(2x)) x^(2x) ( 2+ log x +( 1)/(xlog x ))`
  • if 2^x + 2^y = 2^(x+y) , then (dy)/(dx) Is equal to

    A
    `(2^x +2^y) // (2^y -2^y)`
    B
    `(2^x +2^y ) //(1 + 2^(x+y))`
    C
    `2^(x+y) .(2^y-1)/(1-2^x)`
    D
    `(2^(x+y)-2^x) //2^y`
  • If 2^x + 2^y = 2^(x+y) , then (dy)/(dx) is equal to

    A
    `(2^x +2^y) // (2^y -2^y)`
    B
    `(2^(y)(1-2^(y)))/(2^(x)(2^(x)-1))`
    C
    `(2^(x)(1-2^(y)))/(2^(y)(2^(x)-1))`
    D
    `(2^(x+y)-2^x) //2^y`
  • Similar Questions

    Explore conceptually related problems

    If y=2^(2^(x)) then (dy)/(dx)=

    If 2^x+2^y=2^(x+y) then (dy)/(dx)

    y=2x+3 then (dy)/(dx)=?

    "If "2^(x)+2^(y)=2^(x+y)," then "(dy)/(dx)=

    If y = cos^(2) x^(3) " then "(dy)/(dx) = ?