Home
Class 12
MATHS
Find the adjoint of the given matrix and...

Find the adjoint of the given matrix and verify in each case that `A.(adj A)=(adj A).A=|A\|.I.`
`[(2,3),(5,9)]`

Text Solution

AI Generated Solution

To find the adjoint of the given matrix and verify the equation \( A \cdot (\text{adj} A) = (\text{adj} A) \cdot A = |A| \cdot I \), we will follow these steps: ### Step 1: Define the Matrix Let \( A = \begin{pmatrix} 2 & 3 \\ 5 & 9 \end{pmatrix} \). ### Step 2: Find the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Objective Questions|89 Videos

Similar Questions

Explore conceptually related problems

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. [(3,-5),(-1,2)]

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. [(9,7,3),(5,-1,4),(6,8,2)]

Find the adjoint of the given matrix and verify in each case that A.(adj A)=(adj A).A=|A\|.I. If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] .

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. [(4,5,3),(1,0,6),(2,7,9)]

Find the adjoint of the given matrix and verify in each case that A.(adj A)=(adj A).A=|A\|.I. [(1,-1,2),(3,1,-2),(1,0,3)]

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. [(3,-1,1),(-15,6,-5),(5,-2,2)]

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. [(0,1,2),(1,2,3),(3,1,1)]

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. If A=[(-4,-3,-3),(1,0,1),(4,4,3)] ,show that adj A=A.

Find the adjoint of the given matrix and verify in each case that A.(adj A)=(adj A).A=|A\|.I. [(cos a,sin a),(sin a,cos a)]

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. [(cos a,-sin a,0),(sin a, cos a,0),(0,0,1)]