Home
Class 12
MATHS
If y = sqrt((1 + tan x)/(1 - tan x)) " t...

If `y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)=` ?

A

`(1)/(2) sec^(2)x.tan (x + (pi)/(4))`

B

`(sec^(2) (x + (pi)/(4)))/(2 sqrt(tan (x + (pi)/(4))))`

C

`(sec^(2) ((x)/(4)))/(sqrt(tan (x + (pi)/(4))))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) for the function \(y = \sqrt{\frac{1 + \tan x}{1 - \tan x}}\), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the function as: \[ y = \left(\frac{1 + \tan x}{1 - \tan x}\right)^{1/2} \] ### Step 2: Apply the chain rule Using the chain rule for differentiation, we have: \[ \frac{dy}{dx} = \frac{1}{2} \left(\frac{1 + \tan x}{1 - \tan x}\right)^{-1/2} \cdot \frac{d}{dx}\left(\frac{1 + \tan x}{1 - \tan x}\right) \] ### Step 3: Differentiate the inner function Now, we need to differentiate the inner function \(\frac{1 + \tan x}{1 - \tan x}\) using the quotient rule. The quotient rule states that if \(u = 1 + \tan x\) and \(v = 1 - \tan x\), then: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \] Calculating \(du\) and \(dv\): - \(du = \sec^2 x \, dx\) - \(dv = -\sec^2 x \, dx\) Now substituting into the quotient rule: \[ \frac{d}{dx}\left(\frac{1 + \tan x}{1 - \tan x}\right) = \frac{(1 - \tan x)(\sec^2 x) - (1 + \tan x)(-\sec^2 x)}{(1 - \tan x)^2} \] ### Step 4: Simplify the derivative This simplifies to: \[ \frac{(1 - \tan x + 1 + \tan x)\sec^2 x}{(1 - \tan x)^2} = \frac{2\sec^2 x}{(1 - \tan x)^2} \] ### Step 5: Substitute back into the derivative Now substituting back into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{1}{2} \left(\frac{1 + \tan x}{1 - \tan x}\right)^{-1/2} \cdot \frac{2\sec^2 x}{(1 - \tan x)^2} \] ### Step 6: Final expression This simplifies to: \[ \frac{dy}{dx} = \frac{\sec^2 x}{(1 - \tan x)^2 \sqrt{\frac{1 + \tan x}{1 - \tan x}}} \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = \frac{\sec^2 x}{(1 - \tan x)^2 \sqrt{\frac{1 + \tan x}{1 - \tan x}}} \]

To find the derivative \(\frac{dy}{dx}\) for the function \(y = \sqrt{\frac{1 + \tan x}{1 - \tan x}}\), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the function as: \[ y = \left(\frac{1 + \tan x}{1 - \tan x}\right)^{1/2} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If y=log sqrt((1+tan x)/(1-tan x)), Prove that (dy)/(dx)=sec2x

If y=log sqrt((1-tan x)/(1+tan x)), prove that (dy)/(dx)=sec2x

Knowledge Check

  • If y=sqrt((1- tanx )/(1- tan x)) , then (dy)/(dx)=

    A
    `1/2 sqrt((1-tanx )/(1 + tan x)) sec^2 ((pi)/(4) +x)`
    B
    `sqrt((1- tan x)/( 1+ tan x )) sec^2 ((pi)/(4) +x)`
    C
    `1/2 sqrt((1- tan x)/(1+ tan x)) sec ""((pi)/(4) +x)`
    D
    None of these
  • If Y = (1 + tan x)/(1 - tan x) , then (dy)/(dx) is

    A
    `(2 sec^(2)x)/((1- tan x)^(2))`
    B
    `(2 sec^(2) x)/(1 + tan x)`
    C
    `("sin"^(2) x)/(1 + tan x)`
    D
    `(sec^(2) x)/(1 + tan x)`
  • If y= sqrt ((1-tan 2x ) /( 1+tan 2x )) ,then (dy)/(dx) =

    A
    ` -sec ^(2)((pi)/( 4)- 2x ) sqrt ((1-tan2x)/( 1+ tan 2x) ) `
    B
    ` sec ^(2)((pi)/( 4)- 2x ) sqrt ((1-tan2x)/( 1+ tan 2x) ) `
    C
    `- sec ^(2)((pi)/( 4)- 2x ) sqrt ((1+tan2x)/( 1- tan 2x) ) `
    D
    ` sec ^(2)((pi)/( 4)- 2x ) sqrt ((1+tan2x)/( 1- tan 2x) ) `
  • Similar Questions

    Explore conceptually related problems

    "If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).

    If y=tan^(-1)((1+x)/(1-x)) then (dy)/(dx)=

    If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    If y = tan^(-1) ((1 - cos x)/(sin x)) " then "(dy)/(dx)= ?

    If y=x^(tan ^(-1)x) ,then (dy)/(dx)=