Home
Class 12
MATHS
If y = sec^(-1) ((1)/(2x^(2) -1)) " then...

If `y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx)`= ?

A

`(-2)/((1 + x^(2)))`

B

`(-2)/((1 -x^(2)))`

C

`(-2)/(sqrt(1 -x^(2)))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \), we will follow these steps: ### Step 1: Rewrite the Function We start with the given function: \[ y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \] ### Step 2: Use the Property of Inverse Secant Recall that if \( y = \sec^{-1}(u) \), then: \[ \sec(y) = u \] Thus, we can write: \[ \sec(y) = \frac{1}{2x^2 - 1} \] ### Step 3: Express in Terms of Cosine Using the identity \( \sec(y) = \frac{1}{\cos(y)} \), we can rewrite the equation as: \[ \frac{1}{\cos(y)} = \frac{1}{2x^2 - 1} \] This implies: \[ \cos(y) = 2x^2 - 1 \] ### Step 4: Differentiate Both Sides Now we differentiate both sides with respect to \( x \). Using implicit differentiation: \[ -\sin(y) \frac{dy}{dx} = 4x \] Here, we used the chain rule on the left side. ### Step 5: Solve for \( \frac{dy}{dx} \) Rearranging the equation gives us: \[ \frac{dy}{dx} = -\frac{4x}{\sin(y)} \] ### Step 6: Express \( \sin(y) \) in Terms of \( x \) From the identity \( \sin^2(y) + \cos^2(y) = 1 \), we can find \( \sin(y) \): \[ \sin^2(y) = 1 - \cos^2(y) = 1 - (2x^2 - 1)^2 \] Calculating \( (2x^2 - 1)^2 \): \[ (2x^2 - 1)^2 = 4x^4 - 4x^2 + 1 \] Thus, \[ \sin^2(y) = 1 - (4x^4 - 4x^2 + 1) = -4x^4 + 4x^2 \] So, \[ \sin(y) = \sqrt{4x^2(1 - x^2)} = 2x\sqrt{1 - x^2} \] ### Step 7: Substitute Back into the Derivative Substituting \( \sin(y) \) back into the derivative: \[ \frac{dy}{dx} = -\frac{4x}{2x\sqrt{1 - x^2}} = -\frac{2}{\sqrt{1 - x^2}} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{2}{\sqrt{1 - x^2}} \] ---

To find the derivative of the function \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \), we will follow these steps: ### Step 1: Rewrite the Function We start with the given function: \[ y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If y=((1-x)/(x))^(2)," then: "(dy)/(dx)=

y=sin ^(-1) (1-2x ^(2)),then (dy)/(dx)=

Knowledge Check

  • If y = sec^(-1) ((x^(2) + 1)/(x^(2) -1)) " then " (dy)/(dx) = ?

    A
    `(-2)/((1 + x^(2)))`
    B
    `(2)/((1 + X^(2)))`
    C
    `(-1)/((1 - X^(2)))`
    D
    none of these
  • If y = tan ^(-1) ((2x)/(1-x^(2))) , " then " (dy)/(dx) =____________

    A
    ` (-2)/(1+x^(2))`
    B
    ` 1`
    C
    ` (2)/(1+x^(2))`
    D
    ` (1)/(1+x^(2))`
  • If y=sin ^(-1) (2x^(2) -1) ,then (dy)/(dx)=

    A
    ` (2)/(sqrt(1-x^(2)))`
    B
    ` (-2)/(sqrt(1-x^(2)))`
    C
    ` (1)/(sqrt(1-x^(2)))`
    D
    ` (-1)/(sqrt(1-x^(2)))`
  • Similar Questions

    Explore conceptually related problems

    If sec^(-1) ((1 + x)/(1-y)) = a , " then " (dy)/(dx) is

    If y = sqrt((sec x -1)/(sec x + 1)) " then " (dy)/(dx) = ?

    If 2x=y^(1//m)," then: "(dy)/(dx)=

    If y= sin^(-1)"" (2x )/(1+x^2) + sec^(-1)"" (1-x^2)/(1-x^2) , then (dy)/(dx)=

    If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?