Home
Class 12
MATHS
int cosecx(cosec x + cot x) dx = ?...

`int cosecx(cosec x + cot x) dx = ?`

A

`cot x - cosec x + C`

B

`-cot x + cosec x + C`

C

`cotx + cosec x + C`

D

`-cot x - cosec + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \csc x (\csc x + \cot x) \, dx \), we can follow these steps: ### Step 1: Expand the Integral We start by distributing \( \csc x \) inside the integral: \[ \int \csc x (\csc x + \cot x) \, dx = \int (\csc^2 x + \csc x \cot x) \, dx \] ### Step 2: Split the Integral Now, we can split the integral into two separate integrals: \[ \int \csc^2 x \, dx + \int \csc x \cot x \, dx \] ### Step 3: Integrate Each Term 1. **Integrate \( \csc^2 x \)**: The integral of \( \csc^2 x \) is: \[ \int \csc^2 x \, dx = -\cot x \] 2. **Integrate \( \csc x \cot x \)**: The integral of \( \csc x \cot x \) is: \[ \int \csc x \cot x \, dx = -\csc x \] ### Step 4: Combine the Results Now, we combine the results of the two integrals: \[ -\cot x - \csc x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \csc x (\csc x + \cot x) \, dx = -\cot x - \csc x + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

(i) intsecx (secx +tanx) dx (ii) intcosec x(cosecx + cot x)dx

Find: int cosec x (cosecx-cot x) dx

Knowledge Check

  • int (cot x)/((cosec x - cot x)) dx = ?

    A
    `-cosec x - cot x - x + C`
    B
    `cosec x - cot x - x + C`
    C
    `-cosec x + cot x -x + C`
    D
    `cosec x + cot x -x + C`
  • int secx cosec x log(tanx)dx=

    A
    `log[log(tanx)]+c`
    B
    `(1)/(2)[log(tanx)]^(2)+c`
    C
    `log(sec x cos x)+c`
    D
    `(1)/(2)[tan(logx)]^(2)+c`
  • int(secx cosec x)/(log(cotx))dx=

    A
    `-log(cotx)+c`
    B
    `-log|log(cotx)|+c`
    C
    `cosec^2x log|log(cotx)|+c`
    D
    `cosec^2xlog(cotx)+c`
  • Similar Questions

    Explore conceptually related problems

    If int (cosec^(2)x)/((cosec x + cot x)^(9/2)) dx = (cosec x - cot x)^(7/2)(1/alpha+((cosec x-cotx)^(2))/11)+C where C is constant of integration and alpha in N) then alpha is

    int cotx cosec^2x dx

    log("cosec x"-cot x)

    (i) int(sec x* cosec x)/(log cot x) dx (ii) int tan^(4) x\ dx

    csc x=1+cot x