Home
Class 12
MATHS
int (cos 2x)/(sin^(2) x cos^(2)x) dx = ...

`int (cos 2x)/(sin^(2) x cos^(2)x) dx = ?`

A

`cot x + tan x + C`

B

`-cot x + tan x + C`

C

`cot x - tan x + C`

D

`-cot x - tanx + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\cos 2x}{\sin^2 x \cos^2 x} \, dx\), we can follow these steps: ### Step 1: Rewrite \(\cos 2x\) We know from trigonometric identities that: \[ \cos 2x = \cos^2 x - \sin^2 x \] Thus, we can rewrite the integral as: \[ \int \frac{\cos^2 x - \sin^2 x}{\sin^2 x \cos^2 x} \, dx \] ### Step 2: Split the Integral We can split the integral into two separate integrals: \[ \int \frac{\cos^2 x}{\sin^2 x \cos^2 x} \, dx - \int \frac{\sin^2 x}{\sin^2 x \cos^2 x} \, dx \] This simplifies to: \[ \int \frac{1}{\sin^2 x} \, dx - \int \frac{1}{\cos^2 x} \, dx \] ### Step 3: Use Trigonometric Identities We know that: \[ \frac{1}{\sin^2 x} = \csc^2 x \quad \text{and} \quad \frac{1}{\cos^2 x} = \sec^2 x \] Thus, we can rewrite the integrals: \[ \int \csc^2 x \, dx - \int \sec^2 x \, dx \] ### Step 4: Integrate Each Term The integral of \(\csc^2 x\) is \(-\cot x\) and the integral of \(\sec^2 x\) is \(\tan x\): \[ -\cot x - \tan x + C \] ### Final Answer Thus, the solution to the integral is: \[ \int \frac{\cos 2x}{\sin^2 x \cos^2 x} \, dx = -\cot x - \tan x + C \]

To solve the integral \(\int \frac{\cos 2x}{\sin^2 x \cos^2 x} \, dx\), we can follow these steps: ### Step 1: Rewrite \(\cos 2x\) We know from trigonometric identities that: \[ \cos 2x = \cos^2 x - \sin^2 x \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int(cos2x)/(sin^(2)x cos^(2)x)dx

int(cos2x)/(sin^(2)x.cos^(2)x)dx=

int(cos x)/(sin^(2)x)dx

int(cos x)/(sin^(2)x)dx

Evaluate the following integrals: int ( cos 2x+2sin^(2)x)/(cos^(2)x) dx

int(cos2x)/((sin x+cos x)^(2))dx=

int(cos 2x)/(1+sin x cos x)dx

Evaluate: int(sin x cos x)/(3sin^(2)x-4cos^(2)x)dx

int(cos2x)/(sin x)dx