Home
Class 12
MATHS
int (sin2x)/(sinx )dx = ?...

`int (sin2x)/(sinx )dx = ?`

A

`2 sin x + C`

B

`1/2 sin x + C`

C

`2 cos x + C`

D

`1/2 cos x + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin 2x}{\sin x} \, dx \), we can follow these steps: ### Step 1: Use the double angle identity for sine We know that: \[ \sin 2x = 2 \sin x \cos x \] Substituting this into the integral gives: \[ \int \frac{\sin 2x}{\sin x} \, dx = \int \frac{2 \sin x \cos x}{\sin x} \, dx \] ### Step 2: Simplify the expression The \( \sin x \) in the numerator and denominator cancels out: \[ \int \frac{2 \sin x \cos x}{\sin x} \, dx = \int 2 \cos x \, dx \] ### Step 3: Factor out the constant We can factor out the constant 2 from the integral: \[ \int 2 \cos x \, dx = 2 \int \cos x \, dx \] ### Step 4: Integrate \( \cos x \) The integral of \( \cos x \) is: \[ \int \cos x \, dx = \sin x + C \] where \( C \) is the constant of integration. ### Step 5: Combine the results Now, substituting back into our expression gives: \[ 2 \int \cos x \, dx = 2(\sin x + C) = 2 \sin x + 2C \] We can simply denote \( 2C \) as \( C \) (since \( C \) is an arbitrary constant): \[ 2 \sin x + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sin 2x}{\sin x} \, dx = 2 \sin x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int(sin(x-a))/(sinx)dx

int(sinx)/(1+sin x) dx

Knowledge Check

  • int(sin2x)/(3+2sinx)^2dx=

    A
    `(1)/(2)log|3+2sinx|+(3)/(2(3+2sinx))+c`
    B
    `(1)/(2)log|3+2sinx|-(3)/(2(3+2sinx))+c`
    C
    `(1)/(2)log|3+2sinx|+(2)/(3(3+2sinx))+c`
    D
    `(1)/(2)log|3+2sinx|-(2)/(3(3+2sinx))+c`
  • The integral I=int(2sinx)/((3+sin2x))dx simplifies to (where, C is the constant of integration)

    A
    `ln|(2+sinx-cosx)/(2-sinx+cosx)|-tan^(-1)(sinx+cosx)+C`
    B
    `ln(sinx)+sin2x+C`
    C
    `sin(2x)-ln(cosx)+C`
    D
    `(1)/(4)ln|(2+sinx-cosx)/(2-sinx+cosx)|-(1)/(sqrt2)tan^(-1)((sinx+cosx)/(sqrt2))+C`
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following integrals: int (sinx)/(sin2x)dx

    int(sinx)/(1-sin^(2)x)dx=

    Evaluate : int(sinx)/(sin 2x)dx

    (2.) int(sin x)/(sinx+cos x)dx

    int(sinx)/(sin(x-alpha))dx =

    Evaluate: int(cosx-sinx)/(1+sin2x)dx