Home
Class 12
MATHS
int ((1- sinx))/(cos^(2)x) dx= ?...

`int ((1- sinx))/(cos^(2)x) dx= ?`

A

`tanx +sec x + C`

B

`tanx - sec x + C`

C

`-tanx + sec x + C`

D

`-tanx - sec x + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 - \sin x}{\cos^2 x} \, dx \), we can follow these steps: ### Step 1: Split the integral We can split the integral into two parts: \[ \int \frac{1 - \sin x}{\cos^2 x} \, dx = \int \frac{1}{\cos^2 x} \, dx - \int \frac{\sin x}{\cos^2 x} \, dx \] ### Step 2: Rewrite the integrals We know that \( \frac{1}{\cos^2 x} = \sec^2 x \) and \( \frac{\sin x}{\cos^2 x} = \tan x \sec x \). Thus, we can rewrite the integrals: \[ \int \sec^2 x \, dx - \int \tan x \sec x \, dx \] ### Step 3: Integrate the first term The integral of \( \sec^2 x \) is: \[ \int \sec^2 x \, dx = \tan x + C_1 \] ### Step 4: Integrate the second term The integral of \( \tan x \sec x \) can be solved using the substitution \( u = \tan x \), which gives \( du = \sec^2 x \, dx \). Thus: \[ \int \tan x \sec x \, dx = \int u \, du = \frac{u^2}{2} + C_2 = \frac{\tan^2 x}{2} + C_2 \] ### Step 5: Combine the results Now we can combine the results from the two integrals: \[ \int \frac{1 - \sin x}{\cos^2 x} \, dx = \tan x - \frac{\tan^2 x}{2} + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1 - \sin x}{\cos^2 x} \, dx = \tan x - \frac{\tan^2 x}{2} + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int {(2-3 sinx)/(cos^(2)x) } dx

Integrate : int (1-sinx)/(cos^2x)dx.

Knowledge Check

  • int(sinx)/(cos^(2)x)dx=

    A
    `secx`
    B
    `cosx`
    C
    `tanx`
    D
    `cotx`
  • int_(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2)x)dx is

    A
    `(pi^(2))/(4)`
    B
    `pi^(2)`
    C
    zero
    D
    `(pi)/(2)`
  • Similar Questions

    Explore conceptually related problems

    int(sinx)/((1+cos^(2)x))dx

    int sinx/(1-cos^2x)dx

    (i) int (tanx + cot x)^(2) dx , (ii) int((1+2 sinx)/(cos^(2)x))dx , (iii) int ((3cosx+4)/(sin^(2)x))dx

    int (1-sinx )/ (1-cos x) dx=?

    Determine the value of int_(-pi)^(pi) (2x(1+sinx))/(1+cos^(2)x)dx .

    int(sinx)/(3+4cos^(2)x)dx