Home
Class 12
MATHS
int ((1+ sinx))/((1- sinx)) dx=?...

`int ((1+ sinx))/((1- sinx)) dx=?`

A

`2 sin x + 2 sec x + x + C`

B

`2 tan x + 2 sec x - x + C`

C

`tanx + sec x - x + C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{1 + \sin x}{1 - \sin x} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1 + \sin x}{1 - \sin x} \, dx \] We can multiply and divide the integrand by \(1 + \sin x\): \[ \int \frac{(1 + \sin x)(1 + \sin x)}{(1 - \sin x)(1 + \sin x)} \, dx \] ### Step 2: Simplify the Denominator Using the difference of squares, we simplify the denominator: \[ (1 - \sin x)(1 + \sin x) = 1 - \sin^2 x = \cos^2 x \] Thus, the integral becomes: \[ \int \frac{(1 + \sin x)^2}{\cos^2 x} \, dx \] ### Step 3: Expand the Numerator Now we expand the numerator: \[ (1 + \sin x)^2 = 1 + 2\sin x + \sin^2 x \] So the integral can be rewritten as: \[ \int \frac{1 + 2\sin x + \sin^2 x}{\cos^2 x} \, dx \] ### Step 4: Split the Integral We can split the integral into three separate integrals: \[ \int \frac{1}{\cos^2 x} \, dx + 2 \int \frac{\sin x}{\cos^2 x} \, dx + \int \frac{\sin^2 x}{\cos^2 x} \, dx \] ### Step 5: Integrate Each Term 1. The first integral: \[ \int \frac{1}{\cos^2 x} \, dx = \tan x \] 2. The second integral: \[ 2 \int \frac{\sin x}{\cos^2 x} \, dx = 2 \cdot (-\frac{1}{\cos x}) = -2 \sec x \] 3. The third integral: \[ \int \frac{\sin^2 x}{\cos^2 x} \, dx = \int \tan^2 x \, dx = \tan x - x \] ### Step 6: Combine the Results Combining all the results, we have: \[ \tan x - 2 \sec x + \tan x - x + C \] This simplifies to: \[ 2 \tan x - 2 \sec x - x + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1 + \sin x}{1 - \sin x} \, dx = 2 \tan x - 2 \sec x - x + C \]

To solve the integral \(\int \frac{1 + \sin x}{1 - \sin x} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1 + \sin x}{1 - \sin x} \, dx \] We can multiply and divide the integrand by \(1 + \sin x\): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int(tanx)/((1-sinx))dx

(i) int (cosx)/(1+cosx)dx , (ii) int (sinx)/((1-sinx))dx

Knowledge Check

  • int(sinx)/((1-sinx))dx=?

    A
    `-x+secx-tan+C`
    B
    `x+cosx-sinx+C`
    C
    `-log|1-sinx|+C`
    D
    none of these
  • int(sinx)/((1+sinx))dx=?

    A
    `tanx+secx+C`
    B
    `tanx-secx+C`
    C
    `(1)/(2)"tan"(x)/(2)+C`
    D
    none of these
  • int(sinx)/((1+sinx))dx=?

    A
    `x+tanx-secx+C`
    B
    `x-tanx-secx+C`
    C
    `x-tanx+secx+C`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    int(sinx)/(1+sin x) dx

    int(1)/(1-sinx) dx

    intsqrt((1+sinx)/(1-sinx))dx=

    int((1+sinx))/((1+cosx))dx=?

    int ((1- sinx))/(cos^(2)x) dx= ?