Home
Class 12
MATHS
int cos 3x sin 2x dx = ?...

`int cos 3x sin 2x dx = ?`

A

`1/2 cos x - 1/10cos 5x +C`

B

`-1/2 sin x +1/10 sin 5x +C`

C

`-1/2cos x + 1/10 cos 5x + C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos(3x) \sin(2x) \, dx \), we can use the product-to-sum identities in trigonometry. The relevant identity is: \[ 2 \cos(a) \sin(b) = \sin(a + b) - \sin(a - b) \] ### Step-by-step Solution: 1. **Apply the Identity**: We can rewrite \( \cos(3x) \sin(2x) \) using the identity. \[ \cos(3x) \sin(2x) = \frac{1}{2} \left( \sin(3x + 2x) - \sin(3x - 2x) \right) \] This simplifies to: \[ \cos(3x) \sin(2x) = \frac{1}{2} \left( \sin(5x) - \sin(x) \right) \] 2. **Set up the Integral**: Now we can substitute this back into the integral: \[ \int \cos(3x) \sin(2x) \, dx = \int \frac{1}{2} \left( \sin(5x) - \sin(x) \right) \, dx \] 3. **Factor out the Constant**: The constant \( \frac{1}{2} \) can be factored out of the integral: \[ = \frac{1}{2} \int \left( \sin(5x) - \sin(x) \right) \, dx \] 4. **Integrate Each Term**: Now we can integrate each term separately: - The integral of \( \sin(5x) \) is \( -\frac{1}{5} \cos(5x) \). - The integral of \( \sin(x) \) is \( -\cos(x) \). Thus, we have: \[ = \frac{1}{2} \left( -\frac{1}{5} \cos(5x) + \cos(x) \right) + C \] 5. **Simplify the Expression**: Combining the terms gives: \[ = -\frac{1}{10} \cos(5x) + \frac{1}{2} \cos(x) + C \] ### Final Answer: \[ \int \cos(3x) \sin(2x) \, dx = -\frac{1}{10} \cos(5x) + \frac{1}{2} \cos(x) + C \]

To solve the integral \( \int \cos(3x) \sin(2x) \, dx \), we can use the product-to-sum identities in trigonometry. The relevant identity is: \[ 2 \cos(a) \sin(b) = \sin(a + b) - \sin(a - b) \] ### Step-by-step Solution: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int cos^(3) x. sin x dx

int(cos3x)/(sin x)dx

Knowledge Check

  • int(3 sin x + 2 cos x)/(3 cos x + 2 sin x) dx =

    A
    `12/13 + 5/13 "log" (3 cos x + 2 sin x)`
    B
    `12/(13) x - 5/13 log (3 cos x + 2 sin x)`
    C
    `5/13 x + 12/3 "log" (3 cos x + 2 sin x)`
    D
    none
  • If int cos x cos 2x cos 3x dx = A_(1)sin 2x + A_(2) sin 4x + A_(3) sin 6x + C then

    A
    `A_(1)=(1)/(2),A_(2)=(1)/(4)`
    B
    `A_(1) = (1)/(4),A_(2) = (1)/(8)`
    C
    `A_(2)=(1)/(16),A_(3)=(1)/(8)`
    D
    `A_(1)=(1)/(8),A_(3)=(1)/(24)`
  • Similar Questions

    Explore conceptually related problems

    int sin^3x cos^2x dx

    int sqrt(cos x(cos^(3) x + sin 2x))dx = (1- sinx)/(k)sqrt(1+2 sin x-sin^(2)x) + sin^(-1)((1-sinx)/(sqrt(2)))+c then 3k =

    int (cos x - sin x)/(1 + sin 2x) dx

    int(2cos x)/(3sin ^(2)x)dx,

    int e^(3x)(cos2x+sin2x)dx=e^(3x)*g(x)+c Then 13[g(0)+g((pi)/(4))]=

    int e^(3x)(cos2x+sin2x)dx=e^(3x)*g(x)+c" Then "13[g(0)+g(pi/4)] =