Home
Class 12
MATHS
int(cosx)/((1+sinx)(2+sin x))dx...

`int(cosx)/((1+sinx)(2+sin x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos x}{(1 + \sin x)(2 + \sin x)} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = 1 + \sin x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ dt = \cos x \, dx \] This means that \( \cos x \, dx = dt \). ### Step 2: Rewrite the Integral Now, we can rewrite the integral in terms of \( t \): \[ \int \frac{\cos x}{(1 + \sin x)(2 + \sin x)} \, dx = \int \frac{1}{t(1 + t)} \, dt \] Here, we have replaced \( 1 + \sin x \) with \( t \) and \( 2 + \sin x \) with \( 1 + t \). ### Step 3: Partial Fraction Decomposition Next, we will perform partial fraction decomposition on \( \frac{1}{t(1 + t)} \): \[ \frac{1}{t(1 + t)} = \frac{A}{t} + \frac{B}{1 + t} \] Multiplying through by \( t(1 + t) \) gives: \[ 1 = A(1 + t) + Bt \] Expanding and rearranging, we have: \[ 1 = A + At + Bt \] Combining like terms: \[ 1 = A + (A + B)t \] From this, we can set up the equations: 1. \( A = 1 \) 2. \( A + B = 0 \) From the first equation, \( A = 1 \). Substituting into the second equation gives: \[ 1 + B = 0 \implies B = -1 \] Thus, we can write: \[ \frac{1}{t(1 + t)} = \frac{1}{t} - \frac{1}{1 + t} \] ### Step 4: Integrate Now we can integrate: \[ \int \left( \frac{1}{t} - \frac{1}{1 + t} \right) dt = \int \frac{1}{t} \, dt - \int \frac{1}{1 + t} \, dt \] Calculating these integrals gives: \[ \ln |t| - \ln |1 + t| + C \] ### Step 5: Substitute Back Now we substitute back \( t = 1 + \sin x \): \[ \ln |1 + \sin x| - \ln |2 + \sin x| + C \] Using the property of logarithms \( \ln a - \ln b = \ln \frac{a}{b} \): \[ \ln \left( \frac{1 + \sin x}{2 + \sin x} \right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\cos x}{(1 + \sin x)(2 + \sin x)} \, dx = \ln \left( \frac{1 + \sin x}{2 + \sin x} \right) + C \]

To solve the integral \( \int \frac{\cos x}{(1 + \sin x)(2 + \sin x)} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = 1 + \sin x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ dt = \cos x \, dx \] This means that \( \cos x \, dx = dt \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

(i) int (sin 2x)/((1+sin x)(2-sinx))dx (ii) int (cos x)/((1+sinx) (2-sinx))dx (iii) int (cos x)/((1-sinx)^2(2+sinx)) dx (iv) int ((3sinx-2)cosx)/(13-cos^2x-7 sinx) dx (v) int (sin theta)/((4+ cos^2 theta ) (2-sin^2 theta)) d theta.

int(cosx)/(1+sin x)^2dx

Knowledge Check

  • int (cosx)/(sin^2x(sinx+cosx)) dx is equal to

    A
    `log |(1+tanx)/(tanx)|-cot x+C`
    B
    `log |(tanx)/(1+tanx)|+C`
    C
    `log |(tanx)/(1+tanx)|-tanx+C`
    D
    `log |(tanx)/(1+tanx)|+cotx+C`
  • int(cosx)/(sqrt(sin^2x-2sinx+5))dx=

    A
    `log|sinx-1+sqrt(sin^2x-2sinx+5)|+c`
    B
    `-log|sinx-1+sqrt(sin^2x-2sinx+5)|+c`
    C
    `log|sinx+1+sqrt(sin^2x+2sinx+5)|+c`
    D
    `-log|sinx+1+sqrt(sin^2x+2sinx+5)|+c`
  • int(cosx)/(sqrt(sin^2x-sinx-3))dx=

    A
    `log|sinx+1+sqrt(sin^2-2sinx-3)|+c`
    B
    `log|sinx+1-sqrt(sin^2-2sinx-3)|+c`
    C
    `log|sinx-1+sqrt(sin^2-2sinx-3)|+c`
    D
    `log|sinx-1-sqrt(sin^2-2sinx-3)|+c`
  • Similar Questions

    Explore conceptually related problems

    Evaluate : int_(0)^(pi//2) (cosx)/((1+sin x)(2+sinx)) dx

    Evaluate int(cosx)/((sin^(2)x+4sinx+5))dx .

    int(cosx)/(1+sin^2 x)dx

    int(x^2cosx)/(1+sinx)^2dx

    inte^x((cosx-sinx)/(sin^2x))dx=