Home
Class 12
MATHS
int(tanx)/((1-sinx))dx...

`int(tanx)/((1-sinx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\tan x}{1 - \sin x} \, dx\), we will follow a step-by-step approach. ### Step 1: Rewrite the Integral We start by rewriting \(\tan x\) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we can rewrite the integral as: \[ \int \frac{\tan x}{1 - \sin x} \, dx = \int \frac{\sin x}{\cos x (1 - \sin x)} \, dx \] ### Step 2: Simplify the Expression Next, we can simplify the expression: \[ \int \frac{\sin x}{\cos x (1 - \sin x)} \, dx = \int \frac{\sin x}{\cos^2 x (1 - \sin x)} \, dx \] ### Step 3: Use Substitution To integrate this expression, we can use the substitution \(u = 1 - \sin x\). Then, we find \(du\): \[ du = -\cos x \, dx \quad \Rightarrow \quad dx = -\frac{du}{\cos x} \] Also, we need to express \(\sin x\) in terms of \(u\): \[ \sin x = 1 - u \] Now, substituting these into the integral gives: \[ \int \frac{1 - u}{\cos^2 x \cdot u} \left(-\frac{du}{\cos x}\right) = -\int \frac{(1 - u)}{u \cos^3 x} \, du \] ### Step 4: Express \(\cos^2 x\) in terms of \(u\) From the identity \(\sin^2 x + \cos^2 x = 1\): \[ \cos^2 x = 1 - \sin^2 x = 1 - (1 - u)^2 = 1 - (1 - 2u + u^2) = 2u - u^2 \] Thus, \(\cos^3 x = (2u - u^2)^{3/2}\). ### Step 5: Substitute Back into the Integral Now we can substitute back into the integral: \[ -\int \frac{(1 - u)}{u (2u - u^2)^{3/2}} \, du \] ### Step 6: Solve the Integral This integral can be solved using standard integration techniques, such as partial fractions or further substitution. ### Step 7: Back Substitute After integrating, we will substitute back \(u = 1 - \sin x\) to express the final answer in terms of \(x\). ### Final Answer The final answer will be in the form of a function of \(x\) plus a constant of integration \(C\).

To solve the integral \(\int \frac{\tan x}{1 - \sin x} \, dx\), we will follow a step-by-step approach. ### Step 1: Rewrite the Integral We start by rewriting \(\tan x\) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we can rewrite the integral as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

(i) int (cosx)/(1+cosx)dx , (ii) int (sinx)/((1-sinx))dx

int((1+tanx)/(1-tanx))dx

Knowledge Check

  • int(sinx)/((1-sinx))dx=?

    A
    `-x+secx-tan+C`
    B
    `x+cosx-sinx+C`
    C
    `-log|1-sinx|+C`
    D
    none of these
  • int(sinx)/((1+sinx))dx=?

    A
    `tanx+secx+C`
    B
    `tanx-secx+C`
    C
    `(1)/(2)"tan"(x)/(2)+C`
    D
    none of these
  • int(sinx)/((1+sinx))dx=?

    A
    `x+tanx-secx+C`
    B
    `x-tanx-secx+C`
    C
    `x-tanx+secx+C`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    (i) int(tanx)/((sec x +tanx))dx , (ii) int(1)/((1-sinx))dx

    int(sinx)/((1+cosx))dx

    int(tanx)/(1+cosx)dx=

    The value of int(1+sinx)/(1-sinx)dx

    int(dx)/(1-2sinx)=