Home
Class 11
MATHS
(i) sinx=(sqrt(3))/(2) (ii) cosx...

(i) `sinx=(sqrt(3))/(2)`
(ii) `cosx=1`
(iii) `secx=sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given trigonometric equations step by step. ### (i) Solve `sin x = (sqrt(3))/(2)` 1. **Identify the angle**: We know that `sin(π/3) = √3/2`. Therefore, we can say: \[ x = \frac{\pi}{3} \] 2. **General solution for sine**: The general solution for `sin x = sin α` is given by: \[ x = n\pi + (-1)^n \alpha \] where `α = π/3`. 3. **Substituting α into the formula**: \[ x = n\pi + (-1)^n \frac{\pi}{3} \] 4. **Final general solution**: \[ x = n\pi + (-1)^n \frac{\pi}{3}, \quad n \in \mathbb{Z} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15E)|10 Videos

Similar Questions

Explore conceptually related problems

In each of the following , find the general value of x satisfying the equation : (i) sinx =(-sqrt(3))/(2) (ii) cosx=(-1)/(2) (iii) cotx=-sqrt(3)

Find principal solutions of the following equations : (i) sinx=(-sqrt(3))/(2) (ii) cos x=(-1)/(2) (iii) cotx=-sqrt(3)

Knowledge Check

  • Find the principal solutions of each of the following equations : (i) sinx=(1)/(2) (ii) cosx=(1)/(sqrt(2))

    A
    `pi/6`
    B
    `pi/6, (5pi)/6`
    C
    `pi/6, -pi/6`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Find the principal solutions of each of the following equations : (i) sinx=(sqrt(3))/(2) (ii) cosx=(1)/(2) (iii) tanx=sqrt(3) (iv) cotx=sqrt(3) (v) "cosec "x=sqrt(3) (vi) secx=(2)/(sqrt(3))

    In each of the following , find the general value of x satisfying the equation : (i) sinx=(1)/(sqrt(2)) (ii) cosx =(1)/(2) (iii) tanx=(1)/(sqrt(3))

    Solve the following inequations (i) (sinx-2)(2sinx-1) lt 0 (ii) (2cosx-1)(cosx) le 0 (iii) sinx+sqrt(3)cosx ge 1 (iv) cos^(2)x+sinx le 2 (v) tan^(2)x gt 3

    (i) cosx=(-1)/(2) (ii) "cosec "x=-sqrt(2) (iii) "tan "x=-1

    cosx + sqrt(3)sinx = 1

    intdx/(sqrt (3)cosx+sinx)

    (cosx-sinx)/(sqrt(8-sin2x))