Home
Class 11
MATHS
If sin x=(sqrt(5))/(3) "and " .(pi)/(...

If sin `x=(sqrt(5))/(3) "and " .(pi)/(3) lt x lt pi ` find the values of
`(i) " sin " (x)/(2) " " (ii) " cos " (x)/(2) " " (iii) " tan " (x)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \sin \frac{x}{2} \), \( \cos \frac{x}{2} \), and \( \tan \frac{x}{2} \) given that \( \sin x = \frac{\sqrt{5}}{3} \) and \( \frac{\pi}{3} < x < \pi \). ### Step 1: Find \( \cos x \) We know that \( \sin^2 x + \cos^2 x = 1 \). Given \( \sin x = \frac{\sqrt{5}}{3} \): \[ \sin^2 x = \left(\frac{\sqrt{5}}{3}\right)^2 = \frac{5}{9} \] Now, substituting into the Pythagorean identity: \[ \cos^2 x = 1 - \sin^2 x = 1 - \frac{5}{9} = \frac{4}{9} \] Thus, \[ \cos x = \pm \sqrt{\frac{4}{9}} = \pm \frac{2}{3} \] Since \( x \) is in the interval \( \left(\frac{\pi}{3}, \pi\right) \), where cosine is negative, we have: \[ \cos x = -\frac{2}{3} \] ### Step 2: Find \( \sin \frac{x}{2} \) using the half-angle formula The half-angle formula for sine is: \[ \sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}} \] Substituting \( \cos x = -\frac{2}{3} \): \[ \sin \frac{x}{2} = \sqrt{\frac{1 - \left(-\frac{2}{3}\right)}{2}} = \sqrt{\frac{1 + \frac{2}{3}}{2}} = \sqrt{\frac{\frac{5}{3}}{2}} = \sqrt{\frac{5}{6}} \] ### Step 3: Find \( \cos \frac{x}{2} \) using the half-angle formula The half-angle formula for cosine is: \[ \cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}} \] Substituting \( \cos x = -\frac{2}{3} \): \[ \cos \frac{x}{2} = \sqrt{\frac{1 + \left(-\frac{2}{3}\right)}{2}} = \sqrt{\frac{1 - \frac{2}{3}}{2}} = \sqrt{\frac{\frac{1}{3}}{2}} = \sqrt{\frac{1}{6}} \] ### Step 4: Find \( \tan \frac{x}{2} \) Using the relationship \( \tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \): \[ \tan \frac{x}{2} = \frac{\sqrt{\frac{5}{6}}}{\sqrt{\frac{1}{6}}} = \sqrt{5} \] ### Final Answers (i) \( \sin \frac{x}{2} = \sqrt{\frac{5}{6}} \) (ii) \( \cos \frac{x}{2} = \sqrt{\frac{1}{6}} \) (iii) \( \tan \frac{x}{2} = \sqrt{5} \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15D)|21 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

If cos x=(-3)/(5) " and " .(pi)/(2) lt x lt pi find the values of (i) " sin .(x)/(2) " " (ii) " cos " (x)/(2) " " (iii) " tan " (x)/(2)

if cos x= (-sqrt(15))/(4) " and " (pi)/(2) lt x lt pi find the value of sin x .

Knowledge Check

  • If tan x=(-5)/(12) " and " (pi)/(2) lt x lt pi find the value of cos 2x

    A
    `-(7)/(17)`
    B
    `(7)/(17)`
    C
    `-(119)/(169)`
    D
    `(119)/(169)`
  • If sec x =- (13)/(12) and (pi)/(2) lt x lt pi , find the value of sin 2x

    A
    `(60)/(169)`
    B
    `(-60)/(169)`
    C
    `(120)/(169)`
    D
    `(-120)/(169)`
  • Similar Questions

    Explore conceptually related problems

    If tan x=(-4)/(3) " and " .(pi)/(2) lt x lt pi find the values of (i) " sin ".(x)/(2) " ""(ii) cos " .(x)/(2) " ""(iii) tan ".(x)/(2)

    If sin x=(sqrt(5))/(3) " and " 0 lt x lt .(pi)/(2) find the values of (i) " sin " 2x " ""(ii) cos 2x "" ""(iii) tan 2x "

    If tan x=(-3)/(4) " and" (3pi)/(2) lt x lt 2 pi find the value of "(i) " sin 2x , "(ii) " cos 2x , "(iii) " tan 2x

    If sin x=(12)/(13) "and sin " y= (4)/(5) " where " (pi)/(2) lt x lt pi " and " 0 lt y lt .(pi)/(2) find the values of (i) " sin " (x+y) " "(ii) " cos " (x+y) " "(iii) " tan " (x-y)

    If " sin " x =- (1)/(2) " and " pi lt x lt .(3pi)/(2) find the value of (i) " sin "2x , (ii) " cos " 2x (iii) " tan " 2x

    If tan x=(3)/(4) " and " pi lt x lt .(3pi)/(2) find the value of (i) sin.(x)/(2) , (ii) cos .(x)/(2) , (iii) tan .(x)/(2)