Home
Class 11
MATHS
If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA...

If `{:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)]:}`,then x + y =

A

6

B

-1

C

3

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) from the given matrices \( A \) and \( \text{adj} A \). Given: \[ A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix} \] \[ \text{adj} A = \begin{pmatrix} 6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1 \end{pmatrix} \] ### Step 1: Calculate the determinant of matrix \( A \) To find the adjoint matrix, we first need to calculate the determinant of matrix \( A \). \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 3 & 0 \\ 1 & 2 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} \] Calculating the minors: - \( \begin{vmatrix} 3 & 0 \\ 1 & 2 \end{vmatrix} = (3 \cdot 2) - (0 \cdot 1) = 6 \) - \( \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = (2 \cdot 2) - (0 \cdot 0) = 4 \) - \( \begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} = (2 \cdot 1) - (3 \cdot 0) = 2 \) Now substituting back into the determinant formula: \[ \text{det}(A) = 1 \cdot 6 - 2 \cdot 4 + 2 \cdot 2 = 6 - 8 + 4 = 2 \] ### Step 2: Find the cofactor matrix of \( A \) Next, we calculate the cofactor matrix \( C \) of \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 3 & 0 \\ 1 & 2 \end{vmatrix} = 6 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = -4 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = (-1)^{1+3} \cdot \begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} = 2 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = (-1)^{2+1} \cdot \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} = -2 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = (-1)^{2+2} \cdot \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} = 2 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = (-1)^{2+3} \cdot \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = -1 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = (-1)^{3+1} \cdot \begin{vmatrix} 2 & 2 \\ 3 & 0 \end{vmatrix} = -6 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = (-1)^{3+2} \cdot \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} = 4 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1 \] Thus, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} 6 & -4 & 2 \\ -2 & 2 & -1 \\ -6 & 4 & -1 \end{pmatrix} \] ### Step 3: Find the adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix: \[ \text{adj} A = C^T = \begin{pmatrix} 6 & -2 & -6 \\ -4 & 2 & 4 \\ 2 & -1 & -1 \end{pmatrix} \] ### Step 4: Compare with the given adjoint matrix Now we compare the calculated adjoint matrix with the given adjoint matrix: \[ \text{adj} A = \begin{pmatrix} 6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1 \end{pmatrix} \] From the comparison, we can see: - \( x = 4 \) - \( y = 2 \) ### Step 5: Calculate \( x + y \) Now we can find \( x + y \): \[ x + y = 4 + 2 = 6 \] ### Final Answer \[ \boxed{6} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Exercise|80 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,-2,0),(2,1,3),(0,-2,1)] and B=[(7,2,-6),(-2,1,-3),(-4,2,5)] , find AB Hence , solve the system of equation x-2y=10, 2x+y+3z=8 and -2y+z=7.

If [(1,2,3),(3,1,2),(2,3,1)][(x),(y),(z)]=[(4,-2),(0,-6),(-1,2)][(2),(1)], then (x,y,z)=

Knowledge Check

  • If the trace of the matrix A=[(x-1,0,2,5),(3,x^2-2,4,1),(-1,-2,x-3,1),(2,0,4,x^2-6)] is 0, then x is equal to

    A
    {2,3}
    B
    {-2,-3}
    C
    {-3,2}
    D
    {1,2}
  • If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

    A
    ` (-2,3) `
    B
    ` (2,-3) `
    C
    ` ( -3,2) `
    D
    `( 3,-2) `
  • Find matrices X, if 2X-Y=[(6,-6,0),(-4,2,1)] and X+2Y=[(3,2,5),(-2,1,-7)] .

    A
    `[(3,-2,-2),(-2,0,-1)]`
    B
    `[(3,-2,2),(-2,1,-1)]`
    C
    `[(3,-2,1),(-2,1,-1)]`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Use product [{:(1,-1,2),(0,2,-3),(3,-2,4):}][{:(-2,0,1),(9,2,-3),(6,1,-2):}] to solve the equations : x-3z=9 , -x+2y-2z=4 , 2x-3y+4z=-3

    A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0], [-2, -2, y]] , then (x, y)=

    Find 'x' and 'y', if 2[(1,3),(0,x)]+[(y,0),(1,2)]=[(5,6),(1,8)]

    If x+2y=[[2,0,3],[1,-1,1]] and 2x-y=[[1,-4,-5],[0,2,-1]] ,then

    If x+y=[[1,4,3] , [-2,5,6] , [7,0,2]] and x-y=[[3,2,5] , [4,1,2] , [1,0,4]] then find x and y