Home
Class 11
MATHS
If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA...

If `{:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)]:}`,then x + y =

A

6

B

-1

C

3

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) from the given matrices \( A \) and \( \text{adj} A \). Given: \[ A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix} \] \[ \text{adj} A = \begin{pmatrix} 6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1 \end{pmatrix} \] ### Step 1: Calculate the determinant of matrix \( A \) To find the adjoint matrix, we first need to calculate the determinant of matrix \( A \). \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 3 & 0 \\ 1 & 2 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} \] Calculating the minors: - \( \begin{vmatrix} 3 & 0 \\ 1 & 2 \end{vmatrix} = (3 \cdot 2) - (0 \cdot 1) = 6 \) - \( \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = (2 \cdot 2) - (0 \cdot 0) = 4 \) - \( \begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} = (2 \cdot 1) - (3 \cdot 0) = 2 \) Now substituting back into the determinant formula: \[ \text{det}(A) = 1 \cdot 6 - 2 \cdot 4 + 2 \cdot 2 = 6 - 8 + 4 = 2 \] ### Step 2: Find the cofactor matrix of \( A \) Next, we calculate the cofactor matrix \( C \) of \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 3 & 0 \\ 1 & 2 \end{vmatrix} = 6 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = -4 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = (-1)^{1+3} \cdot \begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} = 2 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = (-1)^{2+1} \cdot \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} = -2 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = (-1)^{2+2} \cdot \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} = 2 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = (-1)^{2+3} \cdot \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = -1 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = (-1)^{3+1} \cdot \begin{vmatrix} 2 & 2 \\ 3 & 0 \end{vmatrix} = -6 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = (-1)^{3+2} \cdot \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} = 4 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1 \] Thus, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} 6 & -4 & 2 \\ -2 & 2 & -1 \\ -6 & 4 & -1 \end{pmatrix} \] ### Step 3: Find the adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix: \[ \text{adj} A = C^T = \begin{pmatrix} 6 & -2 & -6 \\ -4 & 2 & 4 \\ 2 & -1 & -1 \end{pmatrix} \] ### Step 4: Compare with the given adjoint matrix Now we compare the calculated adjoint matrix with the given adjoint matrix: \[ \text{adj} A = \begin{pmatrix} 6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1 \end{pmatrix} \] From the comparison, we can see: - \( x = 4 \) - \( y = 2 \) ### Step 5: Calculate \( x + y \) Now we can find \( x + y \): \[ x + y = 4 + 2 = 6 \] ### Final Answer \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Exercise|80 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,-2,0),(2,1,3),(0,-2,1)] and B=[(7,2,-6),(-2,1,-3),(-4,2,5)] , find AB Hence , solve the system of equation x-2y=10, 2x+y+3z=8 and -2y+z=7.

If [(1,2,3),(3,1,2),(2,3,1)][(x),(y),(z)]=[(4,-2),(0,-6),(-1,2)][(2),(1)], then (x,y,z)=

Use product [{:(1,-1,2),(0,2,-3),(3,-2,4):}][{:(-2,0,1),(9,2,-3),(6,1,-2):}] to solve the equations : x-3z=9 , -x+2y-2z=4 , 2x-3y+4z=-3

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0], [-2, -2, y]] , then (x, y)=

Find 'x' and 'y', if 2[(1,3),(0,x)]+[(y,0),(1,2)]=[(5,6),(1,8)]

If x+2y=[[2,0,3],[1,-1,1]] and 2x-y=[[1,-4,-5],[0,2,-1]] ,then

If x+y=[[1,4,3] , [-2,5,6] , [7,0,2]] and x-y=[[3,2,5] , [4,1,2] , [1,0,4]] then find x and y

OBJECTIVE RD SHARMA-MATRICES-Chapter Test
  1. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  2. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  3. From the matrix equation AB = AC we can conclude B = C provided that

    Text Solution

    |

  4. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  5. Let a, b, c be positive real numbers. The following system of equation...

    Text Solution

    |

  6. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  7. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  8. Consider the system of equations a1x+b1y+c1z=0 a2x+b2y+c2z=0 a3...

    Text Solution

    |

  9. The system of linear equations x+y+z=2 2x+y-z=3 3x+2y+kz=4 has a...

    Text Solution

    |

  10. If A and B are square matrices of order 3 such that absA=-1,absB=3," t...

    Text Solution

    |

  11. If the points (x1,y1),(x2,y2)and(x3,y3) are collinear, then the rank o...

    Text Solution

    |

  12. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  13. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  14. If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)...

    Text Solution

    |

  15. If A is a square matrix such that {:A(adjA)=[(4,0,0),(0,4,0),(0,0,4)]:...

    Text Solution

    |

  16. If n is a natural number. Then {:[(2,-1),(3,-2)]^n:}, is

    Text Solution

    |

  17. If x^2+y^2+z^2 ne0, x=cy+bz,y=az+cxandz=bx+ay" then "a^2+b^2+c^2+2abc=

    Text Solution

    |

  18. If A is a singular matrix, then A (adj A) is a

    Text Solution

    |

  19. If {:A=[(0,1),(1,0)]:},I is the unit matrix of order 2 and a, b are a...

    Text Solution

    |

  20. If {:A=[(cos theta,-sintheta),(sintheta,costheta)]:}, then which one o...

    Text Solution

    |