Home
Class 12
MATHS
int(sin x+cos x)/(sin(x -alpha))dx is e...

`int(sin x+cos x)/(sin(x -alpha))dx` is equal to

A

`(cos alpha- sin alpha)(x - alpha)+(cosalpha+sinalpha)log|sin(x-a)|+C`

B

`(cos alpha+sin alpha)(x - alpha)+(cosalpha+sinalpha)log|sin(x-a)|+C`

C

`(cos alpha+sin alpha)(x + alpha)+(cosalpha+sinalpha)log|sin(x+a)|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin x + \cos x}{\sin(x - \alpha)} \, dx\), we can follow these steps: ### Step 1: Substitute Variables Let \(t = x - \alpha\). Then, \(dx = dt\) and \(x = t + \alpha\). ### Step 2: Rewrite the Integral Substituting \(x\) in the integral, we get: \[ \int \frac{\sin(t + \alpha) + \cos(t + \alpha)}{\sin t} \, dt \] ### Step 3: Use Angle Addition Formulas Using the angle addition formulas: \[ \sin(t + \alpha) = \sin t \cos \alpha + \cos t \sin \alpha \] \[ \cos(t + \alpha) = \cos t \cos \alpha - \sin t \sin \alpha \] Substituting these into the integral gives: \[ \int \frac{(\sin t \cos \alpha + \cos t \sin \alpha) + (\cos t \cos \alpha - \sin t \sin \alpha)}{\sin t} \, dt \] ### Step 4: Simplify the Integral Combining the terms in the numerator: \[ \int \frac{(\sin t \cos \alpha - \sin t \sin \alpha) + (2 \cos t \cos \alpha)}{\sin t} \, dt \] This simplifies to: \[ \int \left(\cos \alpha - \sin \alpha + 2 \cot t \cos \alpha\right) \, dt \] ### Step 5: Separate the Integral Now, we can separate the integral: \[ \int (\cos \alpha - \sin \alpha) \, dt + 2 \cos \alpha \int \cot t \, dt \] ### Step 6: Integrate Each Term 1. The first integral: \[ \int (\cos \alpha - \sin \alpha) \, dt = (\cos \alpha - \sin \alpha)t + C_1 \] 2. The second integral: \[ \int \cot t \, dt = \log |\sin t| + C_2 \] So, we have: \[ 2 \cos \alpha \log |\sin t| + C_2 \] ### Step 7: Combine Results Combining both parts, we get: \[ (\cos \alpha - \sin \alpha)(t) + 2 \cos \alpha \log |\sin t| + C \] ### Step 8: Substitute Back for \(t\) Now, substitute back \(t = x - \alpha\): \[ (\cos \alpha - \sin \alpha)(x - \alpha) + 2 \cos \alpha \log |\sin(x - \alpha)| + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{\sin x + \cos x}{\sin(x - \alpha)} \, dx = (\cos \alpha - \sin \alpha)(x - \alpha) + 2 \cos \alpha \log |\sin(x - \alpha)| + C \]

To solve the integral \(\int \frac{\sin x + \cos x}{\sin(x - \alpha)} \, dx\), we can follow these steps: ### Step 1: Substitute Variables Let \(t = x - \alpha\). Then, \(dx = dt\) and \(x = t + \alpha\). ### Step 2: Rewrite the Integral Substituting \(x\) in the integral, we get: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int((sin x+cos x)dx)/(sin(x-a))

int (cos x) / (sin alpha)

Knowledge Check

  • int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

    A
    0
    B
    `(pi)/(2)`
    C
    `(pi)/(4)`
    D
    `pi`
  • Similar Questions

    Explore conceptually related problems

    int(sin x+x cos x)/(x sin x)dx

    int(sin x+cos x)/(sin x-cos x)dx

    int((sin(x-alpha))/(sin(x+alpha))dx

    int(sin(x-alpha))/(sin(x+alpha)) dx

    int(cos x)/(sin^(2)x(sin x+cos x))dx is equal to

    int(cos x)/(sin^(2)x(sin x+cos x))dx is equal to

    int(dx)/(sin x*sin(x+alpha)) is equal to