Home
Class 12
MATHS
int(sin x+cos x)/(sin(x -alpha))dx is e...

`int(sin x+cos x)/(sin(x -alpha))dx` is equal to

A

`(cos alpha- sin alpha)(x - alpha)+(cosalpha+sinalpha)log|sin(x-a)|+C`

B

`(cos alpha+sin alpha)(x - alpha)+(cosalpha+sinalpha)log|sin(x-a)|+C`

C

`(cos alpha+sin alpha)(x + alpha)+(cosalpha+sinalpha)log|sin(x+a)|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin x + \cos x}{\sin(x - \alpha)} \, dx\), we can follow these steps: ### Step 1: Substitute Variables Let \(t = x - \alpha\). Then, \(dx = dt\) and \(x = t + \alpha\). ### Step 2: Rewrite the Integral Substituting \(x\) in the integral, we get: \[ \int \frac{\sin(t + \alpha) + \cos(t + \alpha)}{\sin t} \, dt \] ### Step 3: Use Angle Addition Formulas Using the angle addition formulas: \[ \sin(t + \alpha) = \sin t \cos \alpha + \cos t \sin \alpha \] \[ \cos(t + \alpha) = \cos t \cos \alpha - \sin t \sin \alpha \] Substituting these into the integral gives: \[ \int \frac{(\sin t \cos \alpha + \cos t \sin \alpha) + (\cos t \cos \alpha - \sin t \sin \alpha)}{\sin t} \, dt \] ### Step 4: Simplify the Integral Combining the terms in the numerator: \[ \int \frac{(\sin t \cos \alpha - \sin t \sin \alpha) + (2 \cos t \cos \alpha)}{\sin t} \, dt \] This simplifies to: \[ \int \left(\cos \alpha - \sin \alpha + 2 \cot t \cos \alpha\right) \, dt \] ### Step 5: Separate the Integral Now, we can separate the integral: \[ \int (\cos \alpha - \sin \alpha) \, dt + 2 \cos \alpha \int \cot t \, dt \] ### Step 6: Integrate Each Term 1. The first integral: \[ \int (\cos \alpha - \sin \alpha) \, dt = (\cos \alpha - \sin \alpha)t + C_1 \] 2. The second integral: \[ \int \cot t \, dt = \log |\sin t| + C_2 \] So, we have: \[ 2 \cos \alpha \log |\sin t| + C_2 \] ### Step 7: Combine Results Combining both parts, we get: \[ (\cos \alpha - \sin \alpha)(t) + 2 \cos \alpha \log |\sin t| + C \] ### Step 8: Substitute Back for \(t\) Now, substitute back \(t = x - \alpha\): \[ (\cos \alpha - \sin \alpha)(x - \alpha) + 2 \cos \alpha \log |\sin(x - \alpha)| + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{\sin x + \cos x}{\sin(x - \alpha)} \, dx = (\cos \alpha - \sin \alpha)(x - \alpha) + 2 \cos \alpha \log |\sin(x - \alpha)| + C \]

To solve the integral \(\int \frac{\sin x + \cos x}{\sin(x - \alpha)} \, dx\), we can follow these steps: ### Step 1: Substitute Variables Let \(t = x - \alpha\). Then, \(dx = dt\) and \(x = t + \alpha\). ### Step 2: Rewrite the Integral Substituting \(x\) in the integral, we get: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int((sin x+cos x)dx)/(sin(x-a))

int (cos x) / (sin alpha)

int(sin x+x cos x)/(x sin x)dx

int(sin x+cos x)/(sin x-cos x)dx

int((sin(x-alpha))/(sin(x+alpha))dx

int(sin(x-alpha))/(sin(x+alpha)) dx

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

int(cos x)/(sin^(2)x(sin x+cos x))dx is equal to

int(cos x)/(sin^(2)x(sin x+cos x))dx is equal to

int(dx)/(sin x*sin(x+alpha)) is equal to

OBJECTIVE RD SHARMA-INDEFINITE INTEGRALS-Chapter Test
  1. int(sin x+cos x)/(sin(x -alpha))dx is equal to

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int (xtan^(-1)x)/sqrt(1+x^2) dx = sqrt(1+x^2)f(x)+Aln|x+sqrt(x^2+1)...

    Text Solution

    |

  4. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  5. If int(xe^x)/sqrt(1+e^x)dx=f(x)sqrt(1+e^x)-2logg(x)+c, then

    Text Solution

    |

  6. The value of the integral int (cos^3x+cos^5 x)/(sin^2 x+sin^4 x) dx is...

    Text Solution

    |

  7. If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , t...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  11. int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/...

    Text Solution

    |

  12. Let f(x)=x/((1+x^n)^(1/ n)) for ngeq2 and g(x)=(f(ofo ...of)(x) Then ...

    Text Solution

    |

  13. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  14. Evaluate: inte^x(1+n x^(n-1)-x^(2n))/((1-x^n)sqrt(1-x^(2n)))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out A & B

    Text Solution

    |

  18. What is int (x^(4) -1)/(x^(2) sqrt(x^(4) + x^(2) + 1)) dx equal to ?

    Text Solution

    |

  19. int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |