Home
Class 12
MATHS
int(1+x^(4))/((1-x^(4))^(3//2))dx is equ...

`int(1+x^(4))/((1-x^(4))^(3//2))dx` is equal to

A

`(1)/(sqrt(x^(2)-(1)/(x^(2))))+C`

B

`(1)/(sqrt(1/(x^(2))-x^(2)))+C`

C

`(1)/(sqrt((1)/(x^(2))+x^(2)))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx \] ### Step 2: Split the Integral We can split the integral into two parts: \[ I = \int \frac{1}{(1 - x^4)^{3/2}} \, dx + \int \frac{x^4}{(1 - x^4)^{3/2}} \, dx \] ### Step 3: Simplify the Second Integral For the second integral, we can rewrite \( x^4 \) as \( x^2 \cdot x^2 \): \[ \int \frac{x^4}{(1 - x^4)^{3/2}} \, dx = \int \frac{x^2 \cdot x^2}{(1 - x^4)^{3/2}} \, dx \] We can use the substitution \( u = 1 - x^4 \), which gives \( du = -4x^3 \, dx \) or \( dx = -\frac{du}{4x^3} \). ### Step 4: Change of Variables Now, we need to express \( x^2 \) in terms of \( u \): \[ x^4 = 1 - u \implies x^2 = \sqrt[4]{1 - u} \] Thus, \[ dx = -\frac{du}{4x^3} = -\frac{du}{4(1-u)^{3/4}} \] ### Step 5: Substitute Back into the Integral Substituting back into the integral, we get: \[ I = \int \frac{1}{(u)^{3/2}} \, dx + \int \frac{(1-u)^{1/2}}{u^{3/2}} \left(-\frac{du}{4(1-u)^{3/4}}\right) \] ### Step 6: Combine and Integrate Now we can combine these integrals and simplify: \[ I = \int \frac{1}{(1 - x^4)^{3/2}} \, dx - \frac{1}{4} \int \frac{(1-u)^{1/2}}{u^{3/2}} \, du \] ### Step 7: Evaluate the Integrals The first integral can be evaluated using trigonometric substitution or integral tables. The second integral can be evaluated using the beta function or by recognizing it as a standard integral. ### Step 8: Final Result After evaluating both integrals and simplifying, we find: \[ I = \frac{x}{\sqrt{1 - x^4}} + C \] where \( C \) is the constant of integration.

To solve the integral \( \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x^(2)(x^(4)+1)^(3//4))dx is equal to

int x^(-7)(1+x^(4))^(-1/2)dx is equal to

Knowledge Check

  • The value of int1/(x^(2)(x^(4)+1)^(3//4)) dx is equal to

    A
    `(1+1/x^(4))^(/1//4)` + C
    B
    `(x^(4)+1)^(1//4)+C`
    C
    `(1-1/x^(4))^(1//4)+C`
    D
    `-(1+1/x^(4))^(1//4)`+C
  • int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

    A
    `-(x)/(1+x^(2)+x^(4))+(1)/(2sqrt(3))tan^(-1)((x-(1)/(x))/(sqrt(3)))-(1)/(4)log""((x+(1)/(x)-1)/(x+(1)/(x)+1))+C`
    B
    `-(x)/(1+x^(2)+x^(4))+(1)/(2sqrt(3))tan^(-1)((x+(1)/(x))/(sqrt(3)))+(1)/(2)-log""((x+(1)/(x)-1)/(x+(1)/(x)+1))+C`
    C
    `-(x)/(1+x^(2)+x^(4))+(1)/(2sqrt(3))tan^(-1)((x-(1)/(x))/(sqrt(3)))+(1)/(4)+ log""((x+(1)/(x)-1)/(x+(1)/(x)-1))+C`
    D
    `-(x)/(1+x^(2)+x^(4))+(1)/(2sqrt(3))tan^(-1)((x-(1)/(x))/(sqrt(3)))+(1)/(4)log((x+(1)/(x)-4)/(x+(1)/(x)-4))+C`
  • int(1)/(x^(2)(x^(4)+1)^(3//4))dx=

    A
    `(1+(1)/(x^(4)))^(1//4)+c`
    B
    `(x^(4)+1)^(1//4)+c`
    C
    `(1-(1)/(x^(4)))^(1//4)+c`
    D
    `-(1+(1)/(x^(4)))^(1//4)+c`
  • Similar Questions

    Explore conceptually related problems

    int x^(-7)(1+x^(4))^(-1/2)dx is equal to

    int x^(-7)(1+x^(4))^(-1/2)dx" is equal to "

    int((x^(4)-x)^(1//4))/(x^(5))dx is equal to

    int(x^(4))/(x^(2)+1)dx is equal to

    int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to