Home
Class 12
MATHS
If intx log (1+(1)/(x))dx =f(x).lo...

If `intx log (1+(1)/(x))dx`
`=f(x).log_(e)(x+1)+g(x)log_(e)x^(2)xLx+C` , then

A

`f(x)=(x^(2))/(2)`

B

`g(x)=log_(e)x`

C

L = 1

D

`L=(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
d

Let `I=intx log(1+(1)/(x))dx`
`rArrI=intunderset(II)(x)logunderset(I" ")((1+x))dx-intunderset(II)(x)logx dx`
`rArr I=(x^(2))/(2)log(1+x)-(1)/(2)int(x^(2))/(x+1)dx-{(x^(2))/(2)logx-int(1)/(x)xx(x^(2))/(2)dx}`
`rArr I=(x^(2))/(2)log_(e)(1+x)-(1)/(2)intx-1+(1)/(x+1)dx-(x^(2))/(2)log_(e)x+(x^(2))/(4)+C`
`rArrI=(x^(2))/(2)log_(e)(1+x)-(1)/(2)((x^(2))/(2)-x)-(1)/(2)log_(e)(x-1)-(x^(2))/(2)log_(e)x+(x^(2))/(4)+C`
`rArrI=((x^(2)-1)/(2))log_(e)(1+x)-(x^(2))/(2)log_(e)x+(x)/(2)+C`
Hence , f(x)`=(x^(2)-1)/(2) ,g(x)=-(x^(2))/(2)andL=(1)/(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int log_(e)(1+x^(2))dx

If int x log(1+(1)/(x))dx=f(x)log(x+1)+g(x)x^(2)+dx+C, then

Knowledge Check

  • If = int x log (1 + (1)/(x) ) dx = f (x) log (x +1) + g (x) x ^(2) +Lx + C, then

    A
    `f (x) = (1)/(2) x ^(2)`
    B
    `g (x) = log x`
    C
    `L =1`
    D
    None of these
  • if log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0 , then

    A
    `x^(2) + e^(-1)`
    B
    `x^(3) -x-1=0`
    C
    `x^(2) +e-1=0`
    D
    `x^(3) -x-e=0`
  • Similar Questions

    Explore conceptually related problems

    int x log_(e)(1+x)dx

    If int x log(1+(1)/(x))dx=f(x)log(x+1)+g(x)x^(2)+Ax+C then (a)f(x)=(1)/(2)x^(2)(b)g(x)=log x(c)A=1(d) none of these

    int_(1)^(x)log_(e)[x]dx

    int (dx)/(x(1+log_(e)x)(3+log_(e)x))

    int log_(e)xdx=int(1)/(log_(x)e)dx=

    I = int {log _(e) log _(e) x + (1)/( (log _(e) x ) ^(2))} dx is equal to: