Home
Class 12
MATHS
int(1)/(sin(x-a)cos(x-b))dx is equal to...

`int(1)/(sin(x-a)cos(x-b))dx` is equal to

A

`(1)/(sin(a-b))log|(sin(x-a))/(cos(x-b))|+C`

B

`(1)/(cos(a-b))log|(sin(x-a))/(cos(x-b))|+C`

C

`(1)/(sin(a+b))log|(sin(x-a))/(cos(x-b))|+C`

D

`(1)/(cos(a+b))log|(sin(x-a))/(cos(x-b))|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\sin(x-a) \cos(x-b)} \, dx \), we can use a trigonometric identity and some algebraic manipulation. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{\sin(x-a) \cos(x-b)} \, dx \] ### Step 2: Use a Trigonometric Identity Recall that \(\sin(x-a) \cos(x-b)\) can be rewritten using the product-to-sum identities. However, in this case, we will manipulate the expression directly. ### Step 3: Multiply and Divide by \(\sin(x-b)\) To facilitate integration, we can multiply and divide the integrand by \(\sin(x-b)\): \[ I = \int \frac{\sin(x-b)}{\sin(x-a) \cos(x-b) \sin(x-b)} \, dx \] ### Step 4: Simplify the Expression Now, we can rewrite the integral: \[ I = \int \frac{\sin(x-b)}{\sin(x-a) \sin(x-b) \cos(x-b)} \, dx \] ### Step 5: Use Substitution Next, we can use the substitution \( u = x - b \), which gives \( du = dx \): \[ I = \int \frac{\sin(u)}{\sin(u + (a-b)) \cos(u)} \, du \] ### Step 6: Further Simplification Using the identity for \(\sin(u + (a-b))\): \[ \sin(u + (a-b)) = \sin(u) \cos(a-b) + \cos(u) \sin(a-b) \] We can substitute this back into the integral: \[ I = \int \frac{\sin(u)}{\sin(u) \cos(a-b) + \cos(u) \sin(a-b) \cos(u)} \, du \] ### Step 7: Final Integration This integral can be simplified further, and we can solve it using standard integration techniques or tables. The final result will depend on the constants \(a\) and \(b\). ### Final Result Thus, the integral can be expressed in terms of logarithmic functions or other elementary functions depending on the specific values of \(a\) and \(b\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int(sin(x-a)dx)/cos(x-b)

int(1)/(sin x-cos x)dx

Knowledge Check

  • int 1/(sin(x-a)"sin"(x-b)) dx is equal to

    A
    `1/(sin(b-a)) log |("sin"(x+b))/(sin (x+a))|+C`
    B
    `1/(sin(b+a)) log |("sin"(x-b))/(sin (x-a))|+C`
    C
    `1/(sin(b-a)) log |("sin"(x-b))/(sin (x-a))|+C`
    D
    None of the above
  • int(1)/(sin^(2)x.cos^(2)x)dx is equal to

    A
    `sinx - cos x +C`
    B
    `tanx +cot x+C`
    C
    `cos x +sinx +C`
    D
    `tanx -cot x +C`
  • int(sin(x+a))/(cos(x-b))dx=

    A
    `x sin(a+b)+cos(a+b)log|sec(x-b)|+c`
    B
    `x sin(a-b)+cos(a-b)log|sec(x-b)|+c`
    C
    `x sin(a-b)-cos(a-b)log|sec(x-b)|+c`
    D
    `x sin(a+b)-cos(a+b)log|sec(x-b)|+c`
  • Similar Questions

    Explore conceptually related problems

    int(sin^4x-cos^4x)dx is equal to

    Evaluate: int(1)/(sin(x-a)cos(x-b))dx

    int(cos x)/(sin^(2)x(sin x+cos x))dx is equal to

    int(dx)/(cos(x-a)sin(x-b))=

    If int (1)/(sin (x -a ) cos (x -b)) dx = A log | (sin (x -a))/( cos (x -b ))| + B. Then