Home
Class 12
MATHS
The value of the integral int(xsin x^(2)...

The value of the integral `int(xsin x^(2)e^(secx^(2)))/(cos^(2)x^(2))dx` , is

A

`(1)/(2)e^(secx^(2))+C`

B

`(1)/(2)e^(sinx^(2))+C`

C

`(1)/(2)sinx^(2)e^(cos^(2)x^(2))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x \sin(x^2) e^{\sec(x^2)}}{\cos^2(x^2)} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = x^2 \). Then, we have: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x}. \] ### Step 2: Rewrite the integral Now, substituting \( x^2 = t \) into the integral, we get: \[ \int \frac{x \sin(t) e^{\sec(t)}}{\cos^2(t)} \cdot \frac{dt}{2x}. \] The \( x \) in the numerator and denominator cancels out: \[ = \frac{1}{2} \int \frac{\sin(t) e^{\sec(t)}}{\cos^2(t)} \, dt. \] ### Step 3: Simplify the integral Recall that \( \sec(t) = \frac{1}{\cos(t)} \), so we can rewrite \( e^{\sec(t)} \) as \( e^{1/\cos(t)} \). Thus, the integral becomes: \[ = \frac{1}{2} \int \sin(t) e^{\frac{1}{\cos(t)}} \sec^2(t) \, dt. \] ### Step 4: Further substitution Now, we can use another substitution. Let \( u = \sec(t) \), then: \[ \frac{du}{dt} = \sec(t) \tan(t) \quad \Rightarrow \quad dt = \frac{du}{\sec(t) \tan(t)}. \] ### Step 5: Substitute and simplify Substituting \( u = \sec(t) \) into our integral, we have: \[ = \frac{1}{2} \int \sin(t) e^u \cdot \frac{du}{\sec(t) \tan(t)}. \] ### Step 6: Integrate This integral can be simplified further, but it will require knowledge of integration techniques. The integral of \( e^u \) is straightforward: \[ = \frac{1}{2} e^u + C = \frac{1}{2} e^{\sec(t)} + C. \] ### Step 7: Back substitution Finally, substitute back \( t = x^2 \): \[ = \frac{1}{2} e^{\sec(x^2)} + C. \] ### Final Answer Thus, the value of the integral is: \[ \int \frac{x \sin(x^2) e^{\sec(x^2)}}{\cos^2(x^2)} \, dx = \frac{1}{2} e^{\sec(x^2)} + C. \] ---

To solve the integral \[ \int \frac{x \sin(x^2) e^{\sec(x^2)}}{\cos^2(x^2)} \, dx, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-2)^(2)|1-x^(2)|dx is

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

Knowledge Check

  • The value of the integral int_(-a)^(a) (xe^(x^(2)))/(1+x^(2))dx is

    A
    `e^(a^(2))`
    B
    0
    C
    `e^(-a^(2))`
    D
    a
  • The value of the integral int(dx)/((e^(x)+e^(-x))^2) is

    A
    `(1)/(2)(e^(2x)+1)+C`
    B
    `(1)/(2)(e^(-2x)+1)+C`
    C
    `-(1)/(2)(e^(2x)+1)^(-1)+C`
    D
    `(1)/(4)(e^(2x)-1)+C`
  • The value of the integral int _(-a)^(a) (xe^(x^(2)))/(1+x^(2)) dx is

    A
    `e^(a^(x))`
    B
    0
    C
    `e^(-a^(2))`
    D
    a
  • Similar Questions

    Explore conceptually related problems

    Find the integral int(2x^(2)+e^(x))dx

    The value of the integral int_(-pi//2)^(pi//2) sqrt((1+cos^(2)x)/(2))dx is

    The value of the integral int_(e^(-1))^(e^(2)) |(log_(e)x)/(x)|dx is

    The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

    The value of the integral int_(e^(-1))^(e^(2)) |(log_(e )x)/(x)| dx is