Home
Class 12
MATHS
inte^(x)((x-1)(x-logx))/(x^(2))dx is equ...

`inte^(x)((x-1)(x-logx))/(x^(2))dx` is equal to

A

`e^(x)((x-"In "x)/(x))+C`

B

`e^(x)((x-"In "x+1)/(x))+C`

C

`e^(x)((x-"In "x)/(x))+C`

D

`e^(x)((x-"In "x-1)/(x))+C`

Text Solution

Verified by Experts

The correct Answer is:
d

Let `I=inte^(x)((x-1)(x-log))/(x^(2))dx` . Then ,
`I=inte^(x)((x^(2)-x+logx-xlogx)/(x^(2)))dx`
`rArrI=inte^(x)((x-logx-1)/(underset(f)(x))+(logx)/(underset(f')(x^(2))))dx`
`rArrI=e^(x)((x-logx-1)/(x))+C`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int((x+1)^(2))/(x(x^(2)+1))dx is equal to:

int((x+1)(x+logx)^2)/(2x)dx

Knowledge Check

  • int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

    A
    `(1)/(2)("In"((x-1)/(x+1)))^(2)+C`
    B
    `(1)/(2)("In"((x+1)/(x-1)))^(2)+C`
    C
    `(1)/(4)("In"((x-1)/(x+1)))^(2)+C`
    D
    `(1)/(4)("In"((x+1)/(x-1)))`
  • int(logx)/(x^(2))dx=?

    A
    `-(1)/(x)(logx+1)+C`
    B
    `(1)/(x)(logx-1)+C`
    C
    `(1)/(x)(logx+1)+C`
    D
    none of these
  • int_(1)^(x) (logx^(2))/x dx is equal to

    A
    `(logx)^(2)`
    B
    `(1)/(2)(logx)^(2)`
    C
    `(logx^(2))/(2)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    int1/(x(1-logx)^(2))dx=

    int ((x+1)^2)/(x(x^2+1)) dx is equal to

    int(dx)/(x(x^(2)+1)) is equal to

    int32x^(3)(logx)^(2) dx is equal ot

    int(sqrt(x^(2)+1)[log(x^(2)+1)-2logx])/(x^(4)) dx is equal to